Nonlinear evolution equations admitting multilinear variable separable solutions

被引:11
|
作者
Qu, Changzheng [1 ,2 ]
Shen, Shoufeng [1 ,3 ]
机构
[1] NW Univ Xian, Ctr Nonlinear Studies, Xian 710069, Peoples R China
[2] NW Univ Xian, Dept Math, Xian 710069, Peoples R China
[3] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
关键词
integral equations; mathematical operators; nonlinear differential equations; partial differential equations; HIROTA 3-SOLITON CONDITION; SEPARATION APPROACH; COHERENT STRUCTURES; SYSTEM; SEARCH;
D O I
10.1063/1.3238300
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the Hirota's bilinear transformation method, it is shown that a family of nonlinear partial differential equations admit multilinear variable separation solutions. This extends the class of nonlinear partial differential equations which admit the multilinear variable separation solutions.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Instruction on the construction of coherent structures based on variable separation solutions of (2+1)-dimensional nonlinear evolution equations in fluid mechanics
    Hong-Yu Wu
    Li-Hong Jiang
    Nonlinear Dynamics, 2019, 97 : 403 - 412
  • [22] Kink solutions of two generalized fifth-order nonlinear evolution equations
    Zhang, Li-Li
    Yu, Jian-Ping
    Ma, Wen-Xiu
    Khalique, Chaudry Masood
    Sun, Yong-Li
    MODERN PHYSICS LETTERS B, 2022, 36 (03):
  • [23] Solitary wave solutions to some nonlinear fractional evolution equations in mathematical physics
    Ali, H. M. Shahadat
    Habib, M. A.
    Miah, M. Mamun
    Akbar, M. Ali
    HELIYON, 2020, 6 (04)
  • [24] The first integral method for constructing exact and explicit solutions to nonlinear evolution equations
    Aslan, Ismail
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (06) : 716 - 722
  • [25] Hybrid rogue wave and breather solutions for the nonlinear coupled dispersionless evolution equations
    Dong, Hao-Nan
    Zhaqilao
    WAVE MOTION, 2024, 125
  • [26] On the exact solutions of nonlinear evolution equations by the improved tan(φ/2)-expansion method
    Ozkan, Yesim Saglam
    Yasar, Emrullah
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [27] Assorted soliton structures of solutions for fractional nonlinear Schrodinger types evolution equations
    Islam, Md. Tarikul
    Akbar, Md. Ali
    Gomez-Aguilar, J. F.
    Bonyah, E.
    Fernandez-Anaya, G.
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2022, 7 (06) : 528 - 535
  • [29] Application of fractional subequation method to nonlinear evolution equations
    Abdelkawy, Mohamed A.
    El-Kalaawy, Omar H.
    Al-Denari, Rasha B.
    Biswas, Anjan
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (05): : 710 - 723
  • [30] An Efficient Variable Projection Formulation for Separable Nonlinear Least Squares Problems
    Gan, Min
    Li, Han-Xiong
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (05) : 707 - 711