How to compute the Stanley depth of a monomial ideal

被引:104
作者
Herzog, Huergen [1 ]
Vladoiu, Marius [2 ]
Zheng, Xinxian [1 ]
机构
[1] Univ Duisburg Essen, Fachbereich Math & Informat, D-45117 Essen, Germany
[2] Univ Bucuresti, Fac Matemat & Informat, RO-010014 Bucharest, Romania
关键词
Stanley depth; Stanley decomposition; Partitions; Prime filtrations; FILTRATIONS; CONJECTURE; MODULES;
D O I
10.1016/j.jalgebra.2008.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J subset of I be monomial ideals. We show that the Stanley depth of I/J can be computed in a finite number of steps. We also introduce the fdepth of a monomial ideal which is defined in terms of prime filtrations and show that it can also be computed in a finite number of steps. In both cases it is shown that these invariants can be determined by considering partitions of suitable finite posets into intervals. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3151 / 3169
页数:19
相关论文
共 22 条
[1]   On a conjecture of R. P. Stanley; part I - Monomial ideals [J].
Apel, J .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2003, 17 (01) :39-56
[2]   On a conjecture of R. P. Stanley; part II - Quotients modulo monomial ideals [J].
Apel, J .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2003, 17 (01) :57-74
[3]   Squarefree lexsegment ideals [J].
Aramova, A ;
Herzog, J ;
Hibi, T .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (02) :353-378
[4]   Saturation and Castelnuovo-Mumford regularity [J].
Bermejo, Isabel ;
Gimenez, Philippe .
JOURNAL OF ALGEBRA, 2006, 303 (02) :592-617
[5]   Shellable nonpure complexes and posets .2. [J].
Bjorner, A ;
Wachs, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :3945-3975
[6]  
Bruns W., 1996, Cohen-Macaulay Rings
[7]  
Conca A., 2003, Col- lect. Math., V54, P137
[8]  
Dress A., 1993, Beitr. Alg. Geom, V34, P45
[9]  
Eisenbud D., 1995, Grad. Texts Math
[10]  
Herzog J, 2003, CONTEMP MATH, V331, P171