Maximal Multiplicative Properties of Partitions

被引:34
|
作者
Bessenrodt, Christine [1 ]
Ono, Ken [2 ]
机构
[1] Leibniz Univ Hannover, Fac Math & Phys, Welfengarten 1, D-30167 Hannover, Germany
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
partitions; partition function;
D O I
10.1007/s00026-015-0289-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extending the partition function multiplicatively to a function on partitions, we show that it has a unique maximum at an explicitly given partition for any n not equal 7. The basis for this is an inequality for the partition function which seems not to have been noticed before.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 50 条
  • [1] Maximal Multiplicative Properties of Partitions
    Christine Bessenrodt
    Ken Ono
    Annals of Combinatorics, 2016, 20 : 59 - 64
  • [2] Multiplicative Properties of the Number of k-Regular Partitions
    Olivia Beckwith
    Christine Bessenrodt
    Annals of Combinatorics, 2016, 20 : 231 - 250
  • [3] Multiplicative Properties of the Number of k-Regular Partitions
    Beckwith, Olivia
    Bessenrodt, Christine
    ANNALS OF COMBINATORICS, 2016, 20 (02) : 231 - 250
  • [4] Multiplicative Partitions
    Chamberland, Marc
    Johnson, Colin
    Nadeau, Alice
    Wu, Bingxi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02)
  • [5] ARITHMAGONS AND GEOMETRICALLY INVARIANT MULTIPLICATIVE INTEGER PARTITIONS
    Franco, J. A.
    Champion, J.
    Lyons, J. W.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2016, 85 (01): : 87 - 95
  • [6] ARITHMETIC PROPERTIES OF TRIANGULAR PARTITIONS
    Kim, Byungchan
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 791 - 802
  • [7] Arithmetic properties of summands of partitions
    Dartyge, C
    Sárközy, A
    RAMANUJAN JOURNAL, 2004, 8 (02) : 199 - 215
  • [8] Arithmetic Properties of Summands of Partitions
    Cécile Dartyge
    András Sárközy
    The Ramanujan Journal, 2004, 8 : 199 - 215
  • [9] Arithmetic Properties of Summands of Partitions II
    Cécile Dartyge
    András Sárközy
    The Ramanujan Journal, 2005, 10 : 383 - 394
  • [10] Arithmetic properties of summands of partitions II
    Dartyge, C
    Sárközy, A
    RAMANUJAN JOURNAL, 2005, 10 (03) : 383 - 394