Weakly almost periodic and uniformly continuous functionals on the Orlicz Figa-Talamanca Herz algebras

被引:3
作者
Lal, Rattan [1 ]
Kumar, N. Shravan [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, Delhi 110016, India
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2021年 / 27卷 / 01期
关键词
Orlicz Figa-Talamanca Herz algebras; Weakly almost periodic functionals; Uniformly continuous functionals; 43A15; 46J10 (Primary);
D O I
10.1007/s40590-021-00342-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study weakly almost periodic and uniformly continuous functionals on the Orlicz Figa-Talamanca Herz algebras associated to a locally compact group. We show that a unique invariant mean exists on the space of weakly almost periodic functionals. We also characterise discrete groups in terms of the inclusion of the space of uniformly continuous functionals inside the space of weakly almost periodic functionals.
引用
收藏
页数:12
相关论文
共 11 条
[1]  
Derighetti A., 2011, Convolution Operators on Groups
[2]   WEAKLY ALMOST PERIODIC FUNCTIONALS ON FOURIER ALGEBRA [J].
DUNKL, CF ;
RAMIREZ, DE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 185 (458) :501-514
[3]  
Folland G.B, 1995, A Course in Abstract Harmonic Analysis
[4]  
Granirer E. E, 1987, Colloq. Math., V52, P119
[5]   HARMONIC SYNTHESIS FOR SUBGROUPS [J].
HERZ, C .
ANNALES DE L INSTITUT FOURIER, 1973, 23 (03) :91-123
[6]   AMENABILITY AND ORLICZ FIGA-TALAMANCA HERZ ALGEBRAS [J].
Lal, Rattan ;
Kumar, N. Shravan .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 112 (02) :218-229
[7]   REPRESENTATIONS OF THE ORLICZ FIGA-TALAMANCA HERZ ALGEBRAS AND SPECTRAL SUBSPACES [J].
Lal, Rattan ;
Kumar, N. Shravan .
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (02) :169-178
[8]   Almost periodic functionals on the Orlicz Figa-Talamanca Herz algebras [J].
Lal, Rattan ;
Kumar, Manoj .
ADVANCES IN OPERATOR THEORY, 2020, 5 (04) :1580-1587
[9]   Orlicz Figa - Talamanca Herz algebras and invariant means [J].
Lal, Rattan ;
Kumar, N. Shravan .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (02) :340-354
[10]  
Rao M. M., 1991, Theory of orlicz spaces