Strong splitting in stable homogeneous models

被引:25
|
作者
Hyttinen, T
Shelah, S
机构
[1] Univ Helsinki, Dept Math, Helsinki 00014, Finland
[2] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[3] Rutgers State Univ, Hill Ctr Bush, New Brunswick, NJ 08903 USA
关键词
model classes; classification; stability;
D O I
10.1016/S0168-0072(99)00044-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study elementary submodels of a stable homogeneous structure. We improve the independence relation defined in Hyttinen (Fund. Math. 156 (1998) 167-182). We apply this to prove a structure theorem. We also show that dop and sdop are essentially equivalent, where the negation of dop is the property we use in our structure theorem and sdop implies nonstructure, see Hyttinen (1998). (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:201 / 228
页数:28
相关论文
共 50 条
  • [31] Compact Stable Constant Mean Curvature Surfaces in Homogeneous 3-manifolds
    Torralbo, Francisco
    Urbano, Francisco
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (03) : 1129 - 1156
  • [32] Highly Stable Molybdenum Disulfide Protected Silicon Photocathodes for Photoelectrochemical Water Splitting
    King, Laurie A.
    Hellstern, Thomas R.
    Park, Joonsuk
    Sinclair, Robert
    Jaramillo, Thomas F.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (42) : 36792 - 36798
  • [33] Consistent Discretization of Locally Homogeneous Finite-time Stable Control Systems
    Polyakov, Andrey
    Efimov, Denis
    Brogliato, Bernard
    Reichhartinger, Markus
    2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 1616 - 1621
  • [34] DELINEATION OF HOMOGENEOUS ZONES BASED ON GEOSTATISTICAL MODELS ROBUST TO OUTLIERS
    Barbosa, Danilo Pereira
    Bottega, Eduardo Leonel
    Magalhaes Valente, Domingos Sarvio
    Santos, Nerilson Terra
    Guimaraes, Wellington Donizete
    REVISTA CAATINGA, 2019, 32 (02) : 472 - 481
  • [35] On the existence of stable population in life cycle models
    Gomes, Diego B. P.
    ECONOMICS LETTERS, 2016, 138 : 104 - 107
  • [36] Fast and stable schemes for Phase Fields models
    Brachet, Matthieu
    Chehab, Jean-Paul
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (06) : 1683 - 1713
  • [37] Exponential ergodicity and strong ergodicity for SDEs driven by symmetric α-stable processes
    Wang, Jian
    APPLIED MATHEMATICS LETTERS, 2013, 26 (06) : 654 - 658
  • [38] Strong iISS for neutrally stable systems by saturated linear state feedback
    Chaillet, Antoine
    Chitour, Yacine
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 459 - 463
  • [39] Crystallization Regulation Engineering in the Carbon Nitride Nanoflower for Strong and Stable Electrochemiluminescence
    Zhao, Bolin
    Liang, Jiahui
    Zou, Xingzi
    Zhang, Baohua
    Zhang, Yuwei
    Niu, Li
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (13) : 16723 - 16731
  • [40] Strong and Stable Doping of Carbon Nanotubes and Graphene by MoOx for Transparent Electrodes
    Hellstrom, Sondra L.
    Vosgueritchian, Michael
    Stoltenberg, Randall M.
    Irfan, Irfan
    Hammock, Mallory
    Wang, Yinchao Bril
    Jia, Chuancheng
    Guo, Xuefeng
    Gao, Yongli
    Bao, Zhenan
    NANO LETTERS, 2012, 12 (07) : 3574 - 3580