Metal-Organic Frameworks for Energy

被引:168
|
作者
Hou, Chun-Chao [1 ]
Xu, Qiang [1 ]
机构
[1] AIST Kyoto Univ, Chem Energy Mat Open Innovat Lab ChEM OIL, Sakyo Ku, Kyoto 6068501, Japan
关键词
catalysis; energy; metal-organic frameworks; nanomaterials; HIGH-SURFACE-AREA; HYDROGEN GENERATION SYSTEM; PERFORMANCE ANODE MATERIAL; HYDROLYTIC DEHYDROGENATION; POROUS CARBON; CO OXIDATION; PLATINUM NANOPARTICLES; SYNERGISTIC CATALYSIS; NICKEL NANOPARTICLES; ELECTRODE MATERIALS;
D O I
10.1002/aenm.201801307
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Serious environmental problems, growing demand for energy, and the pursuit of environmental-friendly, sustainable, and effective energy technologies to store and transform clean energy have all drawn great attention recently. As a part of the special issue "Energy Research in National Institute of Advanced Industrial Science and Technology (AIST)" this review systematically summarizes the research progress of metal-organic framework (MOF) composites and derivatives in energy applications, including catalytic CO oxidation, liquid-phase chemical hydrogen storage, and electrochemical energy storage and conversion. Furthermore, the correlation between MOF-based structures, synthetic strategies, and their corresponding performances is carefully discussed. The further scope and opportunities, expected improvements and challenges are also discussed. This review will not only benefit development of more feasible protocols to fabricate nanostructures for energy systems but also stimulate further interest in MOF composites and derivatives, for energy applications.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Topological properties of metal-organic frameworks
    Awais, Hafiz Muhammad
    Jamal, Muhammad
    Javaid, Muhammad
    MAIN GROUP METAL CHEMISTRY, 2020, 43 (01) : 67 - 76
  • [22] Electrospinning of Metal-Organic Frameworks for Energy and Environmental Applications
    Dou, Yibo
    Zhang, Wenjing
    Kaiser, Andreas
    ADVANCED SCIENCE, 2020, 7 (03)
  • [23] Phase engineering of metal-organic frameworks
    Ma, Chen
    Zheng, Long
    Wang, Gang
    Guo, Jun
    Li, Liuxiao
    He, Qiyuan
    Chen, Ye
    Zhang, Hua
    AGGREGATE, 2022, 3 (01):
  • [24] Energy Transfer in Metal-Organic Frameworks and Its Applications
    Cao, Wenqian
    Tang, Ying
    Cui, Yuanjing
    Qian, Guodong
    SMALL STRUCTURES, 2020, 1 (03):
  • [25] Metal-organic frameworks for energy storage: Batteries and supercapacitors
    Wang, Lu
    Han, Yuzhen
    Feng, Xiao
    Zhou, Junwen
    Qi, Pengfei
    Wang, Bo
    COORDINATION CHEMISTRY REVIEWS, 2016, 307 : 361 - 381
  • [26] Role of metal-organic frameworks (MOFs) in electrochemical energy storage devices including batteries and supercapacitors
    Rashid, Khashia
    Omeema, Umme
    Raza, Abuzar Hasnain
    Manzoor, Ansa
    Abbas, Muhammad Sajid
    Mustafa, Ghulam
    Iqbal, Muhammad Adnan
    Iram, Ghazala
    Akram, Manahil
    Ateeq-Ur-Rehman
    REVIEWS IN INORGANIC CHEMISTRY, 2025,
  • [27] Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks
    Kharod, Ruby A.
    Andrews, Justin L.
    Dinc, Mircea
    ANNUAL REVIEW OF MATERIALS RESEARCH, 2022, 52 : 103 - 128
  • [28] Intrinsic properties of metal-organic frameworks (MOFs) in supercapacitor applications
    Makgopa, Katlego
    Ratsoma, Mpho S.
    Modibane, Kwena D.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 36
  • [29] Nano-sized metal-organic frameworks: Synthesis and applications
    Cai, Xuechao
    Xie, Zhongxi
    Li, Dandan
    Kassymova, Meruyert
    Zang, Shuang-Quan
    Jiang, Hai-Long
    COORDINATION CHEMISTRY REVIEWS, 2020, 417
  • [30] Single-atom active sites on metal-organic frameworks
    Ranocchiari, Marco
    Lothschuetz, Christian
    Grolimund, Daniel
    van Bokhoven, Jeroen Anton
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2143): : 1985 - 1999