Geometric transformations and new integrable problems of rigid body dynamics

被引:4
作者
Yehia, HM [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 23期
关键词
D O I
10.1088/0305-4470/33/23/313
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of motion of a rigid body about a fixed point under the action of conservative forces is considered in the case admitting a linear integral but no axis of symmetry-neither in space nor in the body-is present. A simple transformation of the configuration space is used to reduce the problem of motion of the body to another problem concerning the same body under a system of axisymmetric forces. This analogy enables the construction of several new integrable cases of the first problem by transforming certain known ones of the second. The new cases usually involve singular potential terms. Integrals of motion and physical interpretation are given explicitly for one generally integrable case. Other general and conditional cases are pointed out.
引用
收藏
页码:4393 / 4399
页数:7
相关论文
共 50 条
[31]   A new integrable problem in the dynamics of rigid bodies [J].
Department of Mathematics, Faculty of Science, Mansoura University, Mansoum 35516, Egypt ;
不详 .
Mech Res Commun, 4 (381-383)
[32]   NEW INTEGRABLE CASES IN THE DYNAMICS OF RIGID BODIES [J].
YEHIA, H .
MECHANICS RESEARCH COMMUNICATIONS, 1986, 13 (03) :169-172
[33]   A new integrable problem in the dynamics of rigid bodies [J].
Yehia, HM .
MECHANICS RESEARCH COMMUNICATIONS, 1998, 25 (04) :381-383
[34]   A new approach to the solution of some problems of rigid body dynamics [J].
Ivanova, EA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 (09) :613-622
[35]   Integrable variants of non-holonomic rigid body problems [J].
Okuneva, GG .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1998, 78 (12) :833-840
[36]   2 PROBLEMS IN THE DYNAMICS OF A RIGID BODY [J].
VESELOVA, LE .
VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1986, (05) :90-91
[37]   TOPOLOGICAL ANALYSIS OF THE CLASSICAL INTEGRABLE SYSTEMS IN THE DYNAMICS OF A RIGID BODY [J].
KHARLAMOV, MP .
DOKLADY AKADEMII NAUK SSSR, 1983, 273 (06) :1322-1325
[38]   On the geometry of motions in one integrable problem of the rigid body dynamics [J].
Kharlamova, I. I. ;
Savushkin, A. Y. .
JOURNAL OF GEOMETRY AND PHYSICS, 2015, 87 :266-274
[39]   Computer visualization for the topology of integrable cases in rigid body dynamics [J].
Fomenko, AT .
COMPUTER GRAPHICS INTERNATIONAL, PROCEEDINGS, 1998, :490-503
[40]   Topological classification of the Goryachev integrable case in rigid body dynamics [J].
Nikolaenko, S. S. .
SBORNIK MATHEMATICS, 2016, 207 (01) :113-139