Geometric transformations and new integrable problems of rigid body dynamics

被引:4
作者
Yehia, HM [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 23期
关键词
D O I
10.1088/0305-4470/33/23/313
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of motion of a rigid body about a fixed point under the action of conservative forces is considered in the case admitting a linear integral but no axis of symmetry-neither in space nor in the body-is present. A simple transformation of the configuration space is used to reduce the problem of motion of the body to another problem concerning the same body under a system of axisymmetric forces. This analogy enables the construction of several new integrable cases of the first problem by transforming certain known ones of the second. The new cases usually involve singular potential terms. Integrals of motion and physical interpretation are given explicitly for one generally integrable case. Other general and conditional cases are pointed out.
引用
收藏
页码:4393 / 4399
页数:7
相关论文
共 50 条
[21]   Some Classes of Integrable Problems in Spatial Dynamics of a Rigid Body in a Nonconservative Force Field [J].
Shamolin M.V. .
Journal of Mathematical Sciences, 2015, 210 (3) :292-330
[22]   Integrable billiards model important integrable cases of rigid body dynamics [J].
Fokicheva, V. V. ;
Fomenko, A. T. .
DOKLADY MATHEMATICS, 2015, 92 (03) :682-684
[23]   Integrable billiards model important integrable cases of rigid body dynamics [J].
V. V. Fokicheva ;
A. T. Fomenko .
Doklady Mathematics, 2015, 92 :682-684
[24]   INTEGRABLE CASES OF THE DYNAMICS OF A RIGID BODY, AND INTEGRABLE SYSTEMS ON THE SPHERES SN [J].
BOGOYAVLENSKII, OI .
MATHEMATICS OF THE USSR-IZVESTIYA, 1985, 49 (05) :203-218
[25]   Some new results in topological classification of integrable systems in rigid body dynamics [J].
Fomenko, AT ;
Morozov, PV .
PROCEEDINGS OF THE WORKSHOP ON CONTEMPORARY GEOMETRY AND RELATED TOPICS, 2004, :201-222
[26]   Integrable Discretizations of Some Cases of the Rigid Body Dynamics [J].
Yuri B Suris .
Journal of Nonlinear Mathematical Physics, 2001, 8 :534-560
[27]   The Toy Top, an Integrable System of Rigid Body Dynamics [J].
Boris A. Springborn .
Journal of Nonlinear Mathematical Physics, 2000, 7 (3) :387-410
[28]   Integrable discretizations of some cases of the rigid body dynamics [J].
Suris, YB .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 (04) :534-560
[29]   The toy top, an integrable system of rigid body dynamics [J].
Springborn, BA .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2000, 7 (03) :386-410
[30]   New integrable problems of motion of a rigid body acted upon by nonsymmetric electromagnetic forces [J].
Yehia, HM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (27) :5819-5825