The structure of an ectomycorrhizal community was assessed on a 100-m(2) plot in a 100-year-old, oligotrophic Norway spruce, Picea abies (L.) Karst., forest in southern Sweden. During the 6-year study (1986-1992) sporocarps were identified and their biomass determined. Late in the fall of 1993, we identified mycorrhizas and estimated their abundance. Forty-eight epigeous, ectomycorrhizal taxa were identified based on the examination of sporocarps. Hygrophorus olivaceoalbus (Fr.:Fr.) Fr. and six species of Cortinarius, i.e., C. acutus (Pers.:Fr.) Fr., C. brunneus (Pers.:Fr.) Fr., C. evernius (Fr.:Fr.) Fr., C. obtusus (Fr.) Fr., C. paleaceus Fr., and C. strobilaceus Moser, were found every year. For the period as a whole, they accounted for 32% of the annual sporocarp biomass. Twenty-one species were observed during 1 year only. Cenococcum geophilum Fr. and Piloderma croceum Erikss. & Hjortst. accounted for 18 and 19%, respectively, of the mycorrhizal abundance of the mycorrhizal root tips examined. Using polymerase chain reaction (PCR) based molecular methods, we were able to distinguish 25 taxa forming mycorrhiza from soil cores covering a total of 22.5 cm(2) of the forest floor. Twelve of these taxa were identified using a sporocarp or mycelial culture based reference data base containing 25 of the sporocarp-producing species. These 12 species accounted for an average of 74% of the sporocarp biomass. In contrast, their share of the estimated mycorrhizal abundance and biomass was about 30%. At least half of the abundance of the belowground ectomycorrhizal community was accounted for by species that did not produce conspicuous epigeous sporocarps. Ascomycetes accounted for about 20% of the mycorrhizal abundance. Calculations showed that on a per hectare basis there was 8.8 kg of fungal biomass in the form of sporocarps (average annual cumulative production), an estimated 250-400 kg as mycorrhiza (standing crop) and 440 kg in the form of sclerotia of Cenococcum geophilum (standing crop).