OPTIMAL LOWER BOUNDS ON LOCAL STRESS INSIDE RANDOM MEDIA

被引:6
作者
Alali, Bacim [1 ]
Lipton, Robert [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
random heterogeneous materials; failure criteria; stress concentrations; elastic-perfectly plastic; 2-PHASE ELASTIC COMPOSITE; 2 SPACE DIMENSIONS; MICROSTRUCTURES; STRAIN; CONJECTURE; ENERGY;
D O I
10.1137/080744967
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A methodology is presented for bounding the higher L-p norms, 2 <= p <= infinity, of the local stress inside random media. We present optimal lower bounds that are given in terms of the applied loading and volume fractions for random two phase composites. These bounds provide a means to measure load transfer across length scales relating the excursions of the local fields to applied loads. These results deliver tight upper bounds on the macroscopic strength domains for statistically defined heterogeneous media.
引用
收藏
页码:1260 / 1282
页数:23
相关论文
共 48 条
[21]  
Jikov V.V., 1994, HOMOGENIZATION DIFFE
[22]  
Kelly A., 1986, STRONG SOLIDS
[23]   Some model problems of polycrystal plasticity with deficient basic crystals [J].
Kohn, RV ;
Little, TD .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (01) :172-197
[24]   Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton [J].
Leonetti, F ;
Nesi, V .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (02) :109-124
[25]  
LI J, 2009, J APPL MECH IN PRESS, V76
[26]  
Lieb E.H., 2001, Graduate Studies in Mathematics, VSecond
[27]   Optimal lower bounds on the dilatational strain inside random two-phase composites subjected to hydrostatic loading [J].
Lipton, R .
MECHANICS OF MATERIALS, 2006, 38 (8-10) :833-839
[28]   Optimal lower bounds on the hydrostatic stress amplification inside random two-phase elastic composites [J].
Lipton, R .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (11) :2471-2481
[29]   Optimal lower bounds on the electric-field concentration in composite media [J].
Lipton, R .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (05) :2821-2827
[30]   Optimal inequalities for gradients of solutions of elliptic equations occurring in two-phase heat conductors [J].
Lipton, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 32 (05) :1081-1093