Critical metrics on connected sums of Einstein four-manifolds

被引:13
作者
Gursky, Matthew J. [1 ]
Viaclovsky, Jeff A. [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Einstein metrics; Quadratic curvature functionals; Gluing; Critical metrics; SELF-DUAL MANIFOLDS; LOCALLY EUCLIDEAN METRICS; CONSTANT SCALAR CURVATURE; KAHLER-MANIFOLDS; BLOWING-UP; CONFORMAL STRUCTURES; YAMABE PROBLEM; VOLUME GROWTH; MASS; CONJECTURE;
D O I
10.1016/j.aim.2015.11.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a gluing procedure designed to obtain canonical metrics on connected sums of Einstein four-manifolds. The main application is an existence result, using two well-known Einstein manifolds as building blocks: the Fubini-Study metric on CP2 and the product metric on S-2 x S-2. Using these metrics in various gluing configurations, toric-invariant critical metrics are found on connected sums for a specific Rie-mannian functional, which depends on the global geometry of the factors. Furthermore, using certain quotients of S-2 x S-2 as one of the gluing factors, critical metrics on several non simply-connected manifolds are also obtained. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:210 / 315
页数:106
相关论文
共 43 条
[1]   Asymptotics of the Self-Dual Deformation Complex [J].
Ache, Antonio G. ;
Viaclovsky, Jeff A. .
JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) :951-1000
[2]   OBSTRUCTION-FLAT ASYMPTOTICALLY LOCALLY EUCLIDEAN METRICS [J].
Ache, Antonio G. ;
Viaclovsky, Jeff A. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (04) :832-877
[3]  
Anderson MT., 1989, J. Am. Math. Soc, V2, P455, DOI [10.1090/S0894-0347-1989-0999661-1, DOI 10.1090/S0894-0347-1989-0999661-1, DOI 10.2307/1990939]
[4]  
[Anonymous], ARXIV11055632V2
[5]  
[Anonymous], ANN SCUOLA NORM SUP
[6]   Blowing up and desingularizing constant scalar curvature Kahler manifolds [J].
Arezzo, Claudio ;
Pacard, Frank .
ACTA MATHEMATICA, 2006, 196 (02) :179-228
[7]   EXTREMAL METRICS ON BLOWUPS [J].
Arezzo, Claudio ;
Pacard, Frank ;
Singer, Michael .
DUKE MATHEMATICAL JOURNAL, 2011, 157 (01) :1-51
[8]   Blowing up Kahler manifolds with constant scalar curvature, II [J].
Arezzo, Claudio ;
Pacard, Frank .
ANNALS OF MATHEMATICS, 2009, 170 (02) :685-738
[9]   ON A CONSTRUCTION OF COORDINATES AT INFINITY ON MANIFOLDS WITH FAST CURVATURE DECAY AND MAXIMAL VOLUME GROWTH [J].
BANDO, S ;
KASUE, A ;
NAKAJIMA, H .
INVENTIONES MATHEMATICAE, 1989, 97 (02) :313-349
[10]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693