Automatic screening of tear meniscus from lacrimal duct obstructions using anterior segment optical coherence tomography images by deep learning

被引:7
作者
Imamura, Hitoshi [1 ]
Tabuchi, Hitoshi [1 ,2 ]
Nagasato, Daisuke [1 ,2 ]
Masumoto, Hiroki [1 ,2 ]
Baba, Hiroaki [1 ]
Furukawa, Hiroki [1 ]
Maruoka, Sachiko [1 ]
机构
[1] Tsukazaki Hosp, Dept Ophthalmol, Aboshi Ku, 68-1 Waku, Himeji, Hyogo 6711227, Japan
[2] Hiroshima Univ, Dept Technol & Design Thinking Med, Grad Sch, Hiroshima, Japan
关键词
Anterior segment optical coherence tomography image; Area under the curve; Deep learning; Lacrimal duct obstruction; Tear meniscus; INFERIOR MEATAL DACRYORHINOTOMY; FIELD FUNDUS OPHTHALMOSCOPY; DIAGNOSIS; HEIGHT; DACRYOENDOSCOPY; TECHNOLOGY; ACCURACY;
D O I
10.1007/s00417-021-05078-3
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose We assessed the ability of deep learning (DL) models to distinguish between tear meniscus of lacrimal duct obstruction (LDO) patients and normal subjects using anterior segment optical coherence tomography (ASOCT) images. Methods The study included 117 ASOCT images (19 men and 98 women; mean age, 66.6 +/- 13.6 years) from 101 LDO patients and 113 ASOCT images (29 men and 84 women; mean age, 38.3 +/- 19.9 years) from 71 normal subjects. We trained to construct 9 single and 502 ensemble DL models with 9 different network structures, and calculated the area under the curve (AUC), sensitivity, and specificity to compare the distinguishing abilities of these single and ensemble DL models. Results For the highest single DL model (DenseNet169), the AUC, sensitivity, and specificity for distinguishing LDO were 0.778, 64.6%, and 72.1%, respectively. For the highest ensemble DL model (VGG16, ResNet50, DenseNet121, DenseNet169, InceptionResNetV2, InceptionV3, and Xception), the AUC, sensitivity, and specificity for distinguishing LDO were 0.824, 84.8%, and 58.8%, respectively. The heat maps indicated that these DL models placed their focus on the tear meniscus region of the ASOCT images. Conclusion The combination of DL and ASOCT images could distinguish between tear meniscus of LDO patients and normal subjects with a high level of accuracy. These results suggest that DL might be useful for automatic screening of patients for LDO.
引用
收藏
页码:1569 / 1577
页数:9
相关论文
共 62 条
[1]  
Agrawal P, 2014, LECT NOTES COMPUT SC, V8695, P329, DOI 10.1007/978-3-319-10584-0_22
[2]  
Braganza A., 1977, INDIAN J OPHTHALMOL, V45, P211
[3]  
Chollet F, 2017, DEEP LEARNING DEPTHW
[4]  
Clopper CJ, 1934, BIOMETRIKA, V26, P404, DOI 10.2307/2331986
[5]   Tear Meniscus Measurement by Spectral Optical Coherence Tomography [J].
Czajkowski, Grzegorz ;
Kaluzny, Bartlomiej J. ;
Laudencka, Adriana ;
Malukiewicz, Grazyna ;
Kaluzny, Jakub J. .
OPTOMETRY AND VISION SCIENCE, 2012, 89 (03) :336-342
[6]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]  
Doughty Michael J, 2002, Cont Lens Anterior Eye, V25, P57, DOI 10.1016/S1367-0484(01)00005-4
[9]   On the interpretation of x(2) from contingency tables, and the calculation of P [J].
Fisher, RA .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY, 1922, 85 :87-94
[10]   A Deep Learning System for Automated Angle-Closure Detection in Anterior Segment Optical Coherence Tomography Images [J].
Fu, Huazhu ;
Baskaran, Mani ;
Xu, Yanwu ;
Lin, Stephen ;
Wong, Damon Wing Kee ;
Liu, Jiang ;
Tun, Tin A. ;
Mahesh, Meenakshi ;
Perera, Shamira A. ;
Aung, Tin .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 203 :37-45