Crosstalk between fibroblast growth factor 23, iron, erythropoietin, and inflammation in kidney disease

被引:33
作者
Babitt, Jodie L. [1 ]
Sitara, Despina [2 ,3 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Dept Med, Div Nephrol,Program Membrane Biol,Ctr Syst Biol, Boston, MA 02115 USA
[2] NYU, Coll Dent, Dept Basic Sci & Craniofacial Biol, 345 East 24th St,Room 902C, New York, NY 10010 USA
[3] NYU, Sch Med, Dept Med, New York, NY USA
基金
美国国家卫生研究院;
关键词
anemia; chronic kidney disease; erythropoietin; fibroblast growth factor 23; inflammation; iron deficiency; VITAMIN-D METABOLISM; DOMINANT HYPOPHOSPHATEMIC RICKETS; FERRIC CITRATE; FGF RECEPTOR; BONE; PHOSPHATE; ABLATION; EXPRESSION; REGULATOR; PHENOTYPE;
D O I
10.1097/MNH.0000000000000514
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Purpose of review Recent research has revealed that regulation of the bone-secreted hormone fibroblast growth factor 23 (FGF23) is not limited to classical mineral factors. Specifically, bidirectional relationships have been described between FGF23 production and anemia, iron status, and inflammation. Here, we will review the latest published articles on the crosstalk between FGF23 and the aforementioned nonclassical factors. Recent findings It has been recently reported that erythropoietin, iron deficiency, and inflammation increase FGF23 production and metabolism. Moreover, FGF23 promotes anemia and regulates inflammatory responses. These findings are particularly important in the setting of chronic kidney disease which is characterized by elevated FGF23 levels and several associated comorbidities. Summary Regulation of FGF23 is complex and involves many bone and renal factors. More recently, erythropoietin, iron deficiency, and inflammation have been also shown to affect FGF23 transcription and cleavage. Importantly, FGF23 has emerged as a regulator of erythropoiesis, iron metabolism, and inflammation. These findings provide novel and important insights into the pathophysiologic mechanisms of chronic kidney disease and may present new opportunities for therapeutic clinical interventions.
引用
收藏
页码:304 / 310
页数:7
相关论文
共 57 条
[1]   Comparative safety of intravenous ferumoxytol versus ferric carboxymaltose in iron deficiency anemia: A randomized trial [J].
Adkinson, N. Franklin ;
Strauss, William E. ;
Macdougall, Iain C. ;
Bernard, Kristine E. ;
Auerbach, Michael ;
Kaper, Robert F. ;
Chertow, Glenn M. ;
Krop, Julie S. .
AMERICAN JOURNAL OF HEMATOLOGY, 2018, 93 (05) :683-690
[2]   Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia [J].
Agoro, Rafiou ;
Montagna, Anna ;
Goetz, Regina ;
Aligbe, Onyedikachi ;
Singh, Gurinder ;
Coe, Lindsay M. ;
Mohammadi, Moosa ;
Rivella, Stefano ;
Sitara, Despina .
FASEB JOURNAL, 2018, 32 (07) :3752-3764
[3]   Hypophosphatemia, Severe Bone Pain, Gait Disturbance, and Fatigue Fractures After Iron Substitution in Inflammatory Bowel Disease: A Case Report [J].
Bartko, Johann ;
Roschger, Paul ;
Zandieh, Shahin ;
Brehm, Attila ;
Zwerina, Jochen ;
Klaushofer, Klaus .
JOURNAL OF BONE AND MINERAL RESEARCH, 2018, 33 (03) :534-539
[4]   Effect of ferric citrate on serum phosphate and fibroblast growth factor 23 among patients with nondialysis-dependent chronic kidney disease: path analyses [J].
Block, Geoffrey A. ;
Pergola, Pablo E. ;
Fishbane, Steven ;
Martins, Julian G. ;
LeWinter, Robin D. ;
Uhlig, Katrin ;
Neylan, John F. ;
Chertow, Glenn M. .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2019, 34 (07) :1115-1124
[5]   VITAMIN D: METABOLISM, MOLECULAR MECHANISM OF ACTION, AND PLEIOTROPIC EFFECTS [J].
Christakos, Sylvia ;
Dhawan, Puneet ;
Verstuyf, Annemieke ;
Verlinden, Lieve ;
Carmeliet, Geert .
PHYSIOLOGICAL REVIEWS, 2016, 96 (01) :365-408
[6]   Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow [J].
Clinkenbeard, Erica L. ;
Hanudel, Mark R. ;
Stayrook, Keith R. ;
Appaiah, Hitesh Nidumanda ;
Farrow, Emily G. ;
Cass, Taryn A. ;
Summers, Lelia J. ;
Ip, Colin S. ;
Hum, Julia M. ;
Thomas, Joseph C. ;
Ivan, Mircea ;
Richine, Briana M. ;
Chan, Rebecca J. ;
Clemens, Thomas L. ;
Schipani, Ernestina ;
Sabbagh, Yves ;
Xu, Linlin ;
Srour, Edward F. ;
Alvarez, Marta B. ;
Kacena, Melissa A. ;
Salusky, Isidro B. ;
Ganz, Tomas ;
Nemeth, Elizabeta ;
White, Kenneth E. .
HAEMATOLOGICA, 2017, 102 (11) :E427-E430
[7]   FGF-23 Is a Negative Regulator of Prenatal and Postnatal Erythropoiesis* [J].
Coe, Lindsay M. ;
Madathil, Sangeetha Vadakke ;
Casu, Carla ;
Lanske, Beate ;
Rivella, Stefano ;
Sitara, Despina .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (14) :9795-9810
[8]   Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men [J].
Daryadel, Arezoo ;
Bettoni, Carla ;
Haider, Thomas ;
Silva, Pedro H. Imenez ;
Schnitzbauer, Udo ;
Pastor-Arroyo, Eva Maria ;
Wenger, Roland H. ;
Gassmann, Max ;
Wagner, Carsten A. .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2018, 470 (10) :1569-1582
[9]   Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production [J].
David, Valentin ;
Martin, Aline ;
Isakova, Tamara ;
Spaulding, Christina ;
Qi, Lixin ;
Ramirez, Veronica ;
Zumbrennen-Bullough, Kimberly B. ;
Sun, Chia Chi ;
Lin, Herbert Y. ;
Babitt, Jodie L. ;
Wolf, Myles .
KIDNEY INTERNATIONAL, 2016, 89 (01) :135-146
[10]   Overview of iron metabolism in health and disease [J].
Dev, Som ;
Babitt, Jodie L. .
HEMODIALYSIS INTERNATIONAL, 2017, 21 :S6-S20