Remarks on 16th weak Hilbert problem for n=2

被引:50
作者
Li, CZ [1 ]
Zhang, ZH
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Inst Math, Beijing 100871, Peoples R China
关键词
D O I
10.1088/0951-7715/15/6/310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the exact upper bound on the number of zeros of. Abelian integrals for. all quadratic polynomial one-form over closed orbits of generic quadratic Hamiltonian systems having a saddle loop and a cusp point. This result, together with the results by Horozov and Iliev (1994 Proc. Lond. Math. Soc. 69 198-224), by Gavrilov (2001 Invent. Math. 143 449-97), and by Zhang and Li (1993 Res. Rep. 33; Adv. Math. 26 445-60), gives the final answer to the weak Hilbert 16th problem for n = 2.
引用
收藏
页码:1975 / 1992
页数:18
相关论文
共 21 条
[1]  
Arnold VI, 1988, MONODROMY ASYMPTOTIC
[2]   The cyclicity of period annuli of degenerate quadratic Hamiltonian systems with elliptic segment loops [J].
Chow, SN ;
Li, CZ ;
Yi, YF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :349-374
[3]  
Coppel W. A., 1993, DIFFER INTEGRAL EQU, V6, P1357
[4]   Perturbations from an elliptic Hamiltonian of degree four I. Saddle loop and two saddle cycle [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 176 (01) :114-157
[5]   The infinitesimal 16th Hilbert problem in the quadratic case [J].
Gavrilov, L .
INVENTIONES MATHEMATICAE, 2001, 143 (03) :449-497
[6]   Second-order analysis in polynomially perturbed reversible quadratic Hamiltonian systems [J].
Gavrilov, L ;
Iliev, ID .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :1671-1686
[7]  
HOROZOV E, 1994, P LOND MATH SOC, V69, P198
[8]   ON SADDLE-LOOP BIFURCATIONS OF LIMIT-CYCLES IN PERTURBATIONS OF QUADRATIC HAMILTONIAN-SYSTEMS [J].
HOROZOV, E ;
ILIEV, ID .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 113 (01) :84-105
[9]   The cyclicity of the period annulus of the quadratic Hamiltonian triangle [J].
Iliev, ID .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 128 (01) :309-326
[10]   Perturbations of quadratic centers [J].
Iliev, ID .
BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (02) :107-161