Bayesian Joint Semiparametric Mean-Covariance Modeling for Longitudinal Data

被引:1
|
作者
Liu, Meimei [1 ]
Zhang, Weiping [1 ]
Chen, Yu [1 ]
机构
[1] Univ Sci & Technol China, Sch Management, Dept Stat & Finance, Hefei 230026, Anhui, Peoples R China
关键词
Cholesky decomposition; Longitudinal data; Bayesian semiparametric model; MCMC; GENERALIZED ESTIMATING EQUATIONS; REGRESSION; SPLINE;
D O I
10.1007/s40304-018-0138-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Joint parsimonious modeling the mean and covariance is important for analyzing longitudinal data, because it accounts for the efficiency of parameter estimation and easy interpretation of variability. The main potential risk is that it may lead to inefficient or biased estimators of parameters while misspecification occurs. A good alternative is the semiparametric model. In this paper, a Bayesian approach is proposed for modeling the mean and covariance simultaneously by using semiparametric models and the modified Cholesky decomposition. We use a generalized prior to avoid the knots selection while using B-spline to approximate the nonlinear part and propose a Markov Chain Monte Carlo scheme based on Metropolis-Hastings algorithm for computations. Simulation studies and real data analysis show that the proposed approach yields highly efficient estimators for the parameters and nonparametric parts in the mean, meanwhile providing parsimonious estimation for the covariance structure.
引用
收藏
页码:253 / 267
页数:15
相关论文
共 50 条
  • [1] Bayesian Joint Semiparametric Mean–Covariance Modeling for Longitudinal Data
    Meimei Liu
    Weiping Zhang
    Yu Chen
    Communications in Mathematics and Statistics, 2019, 7 : 253 - 267
  • [2] Joint semiparametric mean-covariance model in longitudinal study
    MAO Jie & ZHU ZhongYi Department of Statistics
    ScienceChina(Mathematics), 2011, 54 (01) : 145 - 164
  • [3] Joint semiparametric mean-covariance model in longitudinal study
    Mao Jie
    Zhu ZhongYi
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (01) : 145 - 164
  • [4] Joint semiparametric mean-covariance model in longitudinal study
    Jie Mao
    ZhongYi Zhu
    Science China Mathematics, 2011, 54 : 145 - 164
  • [5] Semiparametric Mean-Covariance Regression Analysis for Longitudinal Data
    Leng, Chenlei
    Zhang, Weiping
    Pan, Jianxin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 181 - 193
  • [6] jmcm: An R Package for Joint Mean-Covariance Modeling of Longitudinal Data
    Pan, Jianxin
    Pan, Yi
    JOURNAL OF STATISTICAL SOFTWARE, 2017, 82 (09): : 1 - 29
  • [7] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Han Jun YU
    Jun Shan SHEN
    Zhao Nan LI
    Xiang Zhong FANG
    Acta Mathematica Sinica,English Series, 2017, (06) : 748 - 760
  • [8] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Han Jun YU
    Jun Shan SHEN
    Zhao Nan LI
    Xiang Zhong FANG
    Acta Mathematica Sinica, 2017, 33 (06) : 748 - 760
  • [9] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Yu, Han Jun
    Shen, Jun Shan
    Li, Zhao Nan
    Fang, Xiang Zhong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) : 748 - 760
  • [10] Semiparametric Bayesian inference for mean-covariance regression models
    Han Jun Yu
    Jun Shan Shen
    Zhao Nan Li
    Xiang Zhong Fang
    Acta Mathematica Sinica, English Series, 2017, 33 : 748 - 760