Half-minute-scale atomic coherence and high relative stability in a tweezer clock

被引:139
作者
Young, Aaron W. [1 ,2 ,3 ]
Eckner, William J. [1 ,2 ,3 ]
Milner, William R. [1 ,2 ,3 ]
Kedar, Dhruv [1 ,2 ,3 ]
Norcia, Matthew A. [1 ,2 ,3 ]
Oelker, Eric [1 ,2 ,3 ]
Schine, Nathan [1 ,2 ,3 ]
Ye, Jun [1 ,2 ,3 ]
Kaufman, Adam M. [1 ,2 ,3 ]
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
[2] NIST, Boulder, CO 80305 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41586-020-3009-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The preparation of large, low-entropy, highly coherent ensembles of identical quantum systems is fundamental for many studies in quantum metrology(1), simulation(2) and information(3). However, the simultaneous realization of these properties remains a central challenge in quantum science across atomic and condensed-matter systems(2,4-7). Here we leverage the favourable properties of tweezer-trapped alkaline-earth (strontium-88) atoms(8-10), and introduce a hybrid approach to tailoring optical potentials that balances scalability, high-fidelity state preparation, site-resolved readout and preservation of atomic coherence. With this approach, we achieve trapping and optical-clock excited-state lifetimes exceeding 40 seconds in ensembles of approximately 150 atoms. This leads to half-minute-scale atomic coherence on an optical-clock transition, corresponding to quality factors well in excess of 10(16). These coherence times and atom numbers reduce the effect of quantum projection noise to a level that is comparable with that of leading atomic systems, which use optical lattices to interrogate many thousands of atoms in parallel(11,12). The result is a relative fractional frequency stability of 5.2(3) x 10(-17)tau(-1/2) (where tau is the averaging time in seconds) for synchronous clock comparisons between sub-ensembles within the tweezer array. When further combined with the microscopic control and readout that are available in this system, these results pave the way towards long-lived engineered entanglement on an optical-clock transition(13) in tailored atom arrays.
引用
收藏
页码:408 / +
页数:16
相关论文
共 62 条
[1]  
[Anonymous], 2012, QUANTUM COMPUTING EN
[2]   Quantum-diffractive background gas collisions in atom-trap heating and loss [J].
Bali, S ;
O'Hara, KM ;
Gehm, ME ;
Granade, SR ;
Thomas, JE .
PHYSICAL REVIEW A, 1999, 60 (01) :R29-R32
[3]   An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays [J].
Barredo, Daniel ;
de Leseleuc, Sylvain ;
Lienhard, Vincent ;
Lahaye, Thierry ;
Browaeys, Antoine .
SCIENCE, 2016, 354 (6315) :1021-1023
[4]   Probing many-body dynamics on a 51-atom quantum simulator [J].
Bernien, Hannes ;
Schwartz, Sylvain ;
Keesling, Alexander ;
Levine, Harry ;
Omran, Ahmed ;
Pichler, Hannes ;
Choi, Soonwon ;
Zibrov, Alexander S. ;
Endres, Manuel ;
Greiner, Markus ;
Vuletic, Vladan ;
Lukin, Mikhail D. .
NATURE, 2017, 551 (7682) :579-+
[5]   An optical lattice clock with accuracy and stability at the 10-18 level [J].
Bloom, B. J. ;
Nicholson, T. L. ;
Williams, J. R. ;
Campbell, S. L. ;
Bishof, M. ;
Zhang, X. ;
Zhang, W. ;
Bromley, S. L. ;
Ye, J. .
NATURE, 2014, 506 (7486) :71-+
[6]   JILA SrI optical lattice clock with uncertainty of 2.0 x 10-18 [J].
Bothwell, Tobias ;
Kedar, Dhruv ;
Oelker, Eric ;
Robinson, John M. ;
Bromley, Sarah L. ;
Tew, Weston L. ;
Ye, Jun ;
Kennedy, Colin J. .
METROLOGIA, 2019, 56 (06)
[7]   27Al+ Quantum-Logic Clock with a Systematic Uncertainty below 10-18 [J].
Brewer, S. M. ;
Chen, J-S ;
Hankin, A. M. ;
Clements, E. R. ;
Chou, C. W. ;
Wineland, D. J. ;
Hume, D. B. ;
Leibrandt, D. R. .
PHYSICAL REVIEW LETTERS, 2019, 123 (03)
[8]  
Briegel HJ, 2009, NAT PHYS, V5, P19, DOI [10.1038/NPHYS1157, 10.1038/nphys1157]
[9]   Many-body physics with individually controlled Rydberg atoms [J].
Browaeys, Antoine ;
Lahaye, Thierry .
NATURE PHYSICS, 2020, 16 (02) :132-142
[10]   Gray-Molasses Optical-Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly [J].
Brown, M. O. ;
Thiele, T. ;
Kiehl, C. ;
Hsu, T-W ;
Regal, C. A. .
PHYSICAL REVIEW X, 2019, 9 (01)