On super fixed point property and super weak compactness of convex subsets in Banach spaces

被引:26
作者
Cheng, Lixin [1 ]
Cheng, Qingjin [1 ]
Zhang, Jichao [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
关键词
Super fixed point property; Linear isometry; Super weakly compact set; Banach space; DENTABILITY INDEXES; SETS; OPERATORS; MAPPINGS; L(1);
D O I
10.1016/j.jmaa.2015.03.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a nonempty convex set C of a Banach space X, a self-mapping on C is said to a linear (respectively, affine) isometry if it is the restriction of a linear (respectively, affine) isometry defined on the whole space X. By means of super weakly compact set theory established in the recent years, in this paper, we first show that a nonempty closed bounded convex set of a Banach space has super fixed point property for affine (or, equivalently, linear) isometrics if and only if it is super weakly compact; and the super fixed point property and the super weak compactness coincide on every closed bounded convex subset of a Banach space under equivalent reforming sense. With the application of Fabian Montesinos Zizler's renorming theorem, we finally show that every strongly super weakly compact generated Banach space can be renormcd so that every weakly compact convex set has super fixed point property. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1209 / 1224
页数:16
相关论文
共 50 条
  • [31] Fixed point theorems for enriched Ciric-Reich-Rus contractions in Banach spaces and convex metric spaces
    Berinde, Vasile
    Pacurar, Madalina
    CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (02) : 173 - 184
  • [32] Fixed point theorems for enriched Ciric quasi contraction map in Banach and convex metric spaces
    Sarkar, Jayanta
    Som, Tanmoy
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [33] Fixed Point Theorems in Cone Banach Spaces
    Erdal Karapınar
    Fixed Point Theory and Applications, 2009
  • [34] FIXED POINT RESULTS IN LOCALLY CONVEX SPACES WITH τ-KREIN-SMULIAN PROPERTY AND APPLICATIONS
    Bahidi, Fatima
    Krichen, Bilel
    Mefteh, Bilel
    FIXED POINT THEORY, 2021, 22 (02): : 495 - 509
  • [36] The weak Banach-Saks property for function spaces
    Curbera, Guillermo P.
    Ricker, Werner J.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (03) : 657 - 671
  • [37] CONVEX SUBLATTICES OF A LATTICE AND A FIXED POINT PROPERTY
    Duffus, Dwight
    Laflamme, Claude
    Pouzet, Maurice
    Woodrow, Robert
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2013, 8 (01) : 1 - 30
  • [38] The weak topology on q-convex Banach function spaces
    Agud, L.
    Calabuig, J. M.
    Sanchez Perez, E. A.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (2-3) : 136 - 149
  • [39] Fixed point results in convex metric spaces
    Siriyan, Keerati
    Kangtunyakarn, Atid
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
  • [40] Spaces not containing l1 have weak approximate fixed point property
    Kalenda, Ondrej F. K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) : 134 - 137