Thermal limiting effects in optical plasmonic waveguides

被引:4
作者
Ershov, A. E. [1 ,2 ,3 ]
Gerasimov, V. S. [2 ]
Gavrilyuk, A. P. [1 ,2 ]
Karpov, S. V. [2 ,3 ,4 ]
Zakomirnyi, V. I. [2 ,5 ]
Rasskazov, I. L. [6 ]
Polyutov, S. P. [2 ]
机构
[1] KSC SB RAS, Inst Computat Modeling, Fed Res Ctr, Krasnoyarsk 660036, Russia
[2] Siberian Fed Univ, Inst Nanotechnol Spect & Quantum Chem, Krasnoyarsk 660041, Russia
[3] Siberian State Aerosp Univ, Krasnoyarsk 660037, Russia
[4] KSC SB RAS, Fed Res Ctr, Kirensky Inst Phys, Krasnoyarsk 660036, Russia
[5] Royal Inst Technol, SE-10044 Stockholm, Sweden
[6] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
关键词
Plasmon resonance; Optical plasmonic waveguide; Surface plasmon polariton; Thermal effects; ELECTROMAGNETIC ENERGY-TRANSPORT; METAL NANOPARTICLE CHAIN; LINEAR-CHAINS; GOLD NANOPARTICLES; PROPAGATION; POLARITONS; RADIATION; RESONANCE; MODES; GAIN;
D O I
10.1016/j.jqsrt.2017.01.023
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We have studied thermal effects occurring during excitation of optical plasmonic waveguide (OPW) in the form of linear chain of spherical Ag nanoparticles by pulsed laser radiation. It was shown that heating and subsequent melting of the first irradiated particle in a chain can significantly deteriorate the transmission efficiency of OPW that is the crucial and limiting factor and continuous operation of OPW requires cooling devices. This effect is caused by suppression of particle's surface plasmon resonance due to reaching the melting point temperature. We have determined optimal excitation parameters which do not significantly affect the transmission efficiency of OPW. Published by Elsevier Ltd.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 51 条
  • [1] Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines
    Alu, Andrea
    Engheta, Nader
    [J]. PHYSICAL REVIEW B, 2006, 74 (20):
  • [2] [Anonymous], 2009, Theory of Elasticity
  • [3] Photoinduced Heating of Nanoparticle Arrays
    Baffou, Guillaume
    Berto, Pascal
    Urena, Esteban Bermudez
    Quidant, Romain
    Monneret, Serge
    Polleux, Julien
    Rigneault, Herve
    [J]. ACS NANO, 2013, 7 (08) : 6478 - 6488
  • [4] Plasmon mode propagation in array of closely spaced metallic cylinders
    Belan, Sergey
    Vergeles, Sergey
    [J]. OPTICAL MATERIALS EXPRESS, 2015, 5 (01): : 130 - 141
  • [5] Bohren C. F., 1998, Wiley Science Series
  • [6] Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit
    Brongersma, ML
    Hartman, JW
    Atwater, HA
    [J]. PHYSICAL REVIEW B, 2000, 62 (24) : 16356 - 16359
  • [7] SIZE-DEPENDENT MELTING TEMPERATURE OF INDIVIDUAL NANOMETER-SIZED METALLIC CLUSTERS
    CASTRO, T
    REIFENBERGER, R
    CHOI, E
    ANDRES, RP
    [J]. PHYSICAL REVIEW B, 1990, 42 (13) : 8548 - 8556
  • [8] Chew W. C., 1995, Waves Fields Inhomogeneous Media(Electromagnetic Waves)
  • [9] Surface-mediated light transmission in metal nanoparticle chains
    Compaijen, P. Jasper
    Malyshev, Victor A.
    Knoester, Jasper
    [J]. PHYSICAL REVIEW B, 2013, 87 (20)
  • [10] Engineering plasmon dispersion relations: hybrid nanoparticle chain - substrate plasmon polaritons
    Compaijen, Paul J.
    Malyshev, Victor A.
    Knoester, Jasper
    [J]. OPTICS EXPRESS, 2015, 23 (03): : 2280 - 2292