RECONSTRUCTION OF THE COLLISION KERNEL IN THE NONLINEAR BOLTZMANN EQUATION

被引:18
|
作者
Lai, Ru-Yu [1 ]
Uhlmann, Gunther [2 ,3 ]
Yang, Yang [4 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] HKUST, HKUST Jockey Club Inst Adv Study, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[4] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
inverse problems; nonlinearity; Boltzmann equation; collision operator; STATIONARY RADIATIVE TRANSPORT; INVERSE PROBLEMS; GLOBAL EXISTENCE; TRACE THEOREMS; STABILITY; SCATTERING; MEDIA;
D O I
10.1137/20M1329366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse problem for the Boltzmann equation with nonlinear collision operator in dimensions n >= 2. We show that the kinetic collision kernel can be uniquely determined from the incoming-to-outgoing mappings on the boundary of the domain provided that the kernel satisfies a monotonicity condition. Furthermore, a reconstruction formula is also derived. The key methodology is based on the higher-order linearization scheme to reduce a nonlinear equation into simpler linear equations by introducing multiple small parameters into the original equation.
引用
收藏
页码:1049 / 1069
页数:21
相关论文
共 50 条
  • [21] Neural-network based collision operators for the Boltzmann equation
    Miller, Sean T.
    Roberts, Nathan, V
    Bond, Stephen D.
    Cyr, Eric C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 470
  • [22] Nonlinear Stability of Rarefaction Waves for the Boltzmann Equation
    Tai-Ping Liu
    Tong Yang
    Shih-Hsien Yu
    Hui-Jiang Zhao
    Archive for Rational Mechanics and Analysis, 2006, 181 : 333 - 371
  • [23] Nonlinear stability of the 1D Boltzmann equation in a periodic box
    Wu, Kung-Chien
    NONLINEARITY, 2018, 31 (05) : 2173 - 2191
  • [24] Recurrence relations between kernels of the nonlinear Boltzmann collision integral
    Ender, A. Ya.
    Ender, I. A.
    Bakaleinikov, L. A.
    Flegontova, E. Yu.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2012, 36 : 17 - 24
  • [25] A Fast Conservative Spectral Solver for the Nonlinear Boltzmann Collision Operator
    Gamba, Irene M.
    Haack, Jeffrey R.
    Hu, Jingwei
    PROCEEDINGS OF THE 29TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, 2014, 1628 : 1003 - 1008
  • [26] PARAMETER RECONSTRUCTION FOR GENERAL TRANSPORT EQUATION
    Lai, Ru-Yu
    Li, Qin
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (03) : 2734 - 2758
  • [27] AN ENTROPIC FOURIER METHOD FOR THE BOLTZMANN EQUATION
    Cai, Zhenning
    Fan, Yuwei
    Ying, Lexing
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05): : A2858 - A2882
  • [28] Asymptotic form of the matrix elements of the direct collision integral in the Boltzmann equation
    E. A. Tropp
    E. Yu. Flegontova
    Technical Physics, 2015, 60 : 811 - 814
  • [29] Asymptotic Form of the Matrix Elements of the Direct Collision Integral in the Boltzmann Equation
    Tropp, E. A.
    Flegontova, E. Yu.
    TECHNICAL PHYSICS, 2015, 60 (06) : 811 - 814
  • [30] NUMERICAL SOLVER FOR THE BOLTZMANN EQUATION WITH SELF-ADAPTIVE COLLISION OPERATORS
    Cai, Zhenning
    Wang, Yanli
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : B275 - B309