RECONSTRUCTION OF THE COLLISION KERNEL IN THE NONLINEAR BOLTZMANN EQUATION

被引:18
|
作者
Lai, Ru-Yu [1 ]
Uhlmann, Gunther [2 ,3 ]
Yang, Yang [4 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] HKUST, HKUST Jockey Club Inst Adv Study, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[4] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
inverse problems; nonlinearity; Boltzmann equation; collision operator; STATIONARY RADIATIVE TRANSPORT; INVERSE PROBLEMS; GLOBAL EXISTENCE; TRACE THEOREMS; STABILITY; SCATTERING; MEDIA;
D O I
10.1137/20M1329366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an inverse problem for the Boltzmann equation with nonlinear collision operator in dimensions n >= 2. We show that the kinetic collision kernel can be uniquely determined from the incoming-to-outgoing mappings on the boundary of the domain provided that the kernel satisfies a monotonicity condition. Furthermore, a reconstruction formula is also derived. The key methodology is based on the higher-order linearization scheme to reduce a nonlinear equation into simpler linear equations by introducing multiple small parameters into the original equation.
引用
收藏
页码:1049 / 1069
页数:21
相关论文
共 50 条
  • [1] STABLE DETERMINATION OF TIME-DEPENDENT COLLISION KERNEL IN THE NONLINEAR BOLTZMANN EQUATION
    Lai, Ru-yu
    Yan, Lili
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (05) : 1937 - 1956
  • [2] DETERMINING THE COLLISION KERNEL IN THE BOLTZMANN EQUATION NEAR THE EQUILIBRIUM
    Li, Li
    Ouyang, Zhimeng
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (11) : 4855 - 4865
  • [3] Construction of the collision integral kernel for the nonlinear Boltzmann equation from its matrix elements
    L. A. Bakaleinikov
    E. Yu. Flegontova
    A. Ya. Ender
    I. A. Ender
    Technical Physics, 2014, 59 : 796 - 807
  • [4] Well/Ill-Posedness Bifurcation for the Boltzmann Equation with Constant Collision Kernel
    Chen, Xuwen
    Holmer, Justin
    ANNALS OF PDE, 2024, 10 (02)
  • [5] Some general properties of the nonlinear collision integral in the Boltzmann equation
    A. Ya. Ender
    I. A. Ender
    L. A. Bakaleinikov
    Technical Physics, 2010, 55 : 1400 - 1410
  • [6] The collision integral kernels of the scalar nonlinear Boltzmann equation for pseudopower potentials
    L. A. Bakaleinikov
    E. A. Tropp
    E. Yu. Flegontova
    A. Ya. Ender
    I. A. Ender
    Technical Physics, 2015, 60 : 8 - 13
  • [7] Recurrence procedure for calculating kernels of the nonlinear collision integral of the Boltzmann equation
    L. A. Bakaleinikov
    E. Yu. Flegontova
    A. Ya. Ender
    I. A. Ender
    Technical Physics, 2016, 61 : 486 - 497
  • [8] Recurrence procedure for calculating kernels of the nonlinear collision integral of the Boltzmann equation
    Bakaleinikov, L. A.
    Flegontova, E. Yu.
    Ender, A. Ya.
    Ender, I. A.
    TECHNICAL PHYSICS, 2016, 61 (04) : 486 - 497
  • [9] Adjoint DSMC for nonlinear spatially-homogeneous Boltzmann equation with a general collision model
    Yang, Yunan
    Silantyev, Denis
    Caflisch, Russel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 488
  • [10] BOUNDEDNESS OF THE STATIONARY SOLUTION TO THE BOLTZMANN EQUATION WITH SPATIAL SMEARING, DIFFUSIVE BOUNDARY CONDITIONS, AND LIONS' COLLISION KERNEL
    Loebus, Joerg-Uwe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (06) : 5761 - 5782