SPECTRAL PROPERTIES OF KERNEL MATRICES IN THE FLAT LIMIT

被引:8
作者
Barthelme, Simon [1 ]
Usevich, Konstantin [2 ,3 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, F-38000 Grenoble, France
[2] Univ Lorraine, Campus Sci,BP 70239, F-54506 Vandoeuvre Les Nancy, France
[3] CNRS, CRAN Ctr Rech Automat Nancy, UMR 7039, Campus Sci,BP 70239, F-54506 Vandoeuvre Les Nancy, France
关键词
kernel matrices; eigenvalues; eigenvectors; radial basis functions; perturbation theory; flat limit; discrete orthogonal polynomials; MULTIVARIATE INTERPOLATION; POLYNOMIAL INTERPOLATION; EIGENVALUES; BOUNDS;
D O I
10.1137/19M129677X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Kernel matrices are of central importance to many applied fields. In this manuscript, we focus on spectral properties of kernel matrices in the so-called "flat limit," which occurs when points are close together relative to the scale of the kernel. We establish asymptotic expressions for the determinants of the kernel matrices, which we then leverage to obtain asymptotic expressions for the main terms of the eigenvalues. Analyticity of the eigenprojectors yields expressions for limiting eigenvectors, which are strongly tied to discrete orthogonal polynomials. Both smooth and finitely smooth kernels are covered, with stronger results available in the finite smoothness case.
引用
收藏
页码:17 / 57
页数:41
相关论文
共 45 条
[1]   Preconditioned conjugate gradients, radial basis functions, and Toeplitz matrices [J].
Baxter, BJC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (3-5) :305-318
[2]   NORM ESTIMATES FOR INVERSES OF TOEPLITZ DISTANCE MATRICES [J].
BAXTER, BJC .
JOURNAL OF APPROXIMATION THEORY, 1994, 79 (02) :222-242
[3]   On the eigenvalues of a class of saddle point matrices [J].
Benzi, M ;
Simoncini, V .
NUMERISCHE MATHEMATIK, 2006, 103 (02) :173-196
[4]   Higher order derivatives and perturbation bounds for determinants [J].
Bhatia, Rajendra ;
Jain, Tanvi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (11) :2102-2108
[5]   Spectral properties of distance matrices [J].
Bogomolny, E ;
Bohigas, O ;
Schmit, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12) :3595-3616
[6]   Kernel spectral clustering of large dimensional data [J].
Couillet, Romain ;
Benaych-Georges, Florent .
ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01) :1393-1454
[7]  
Cox D., 1997, UNDERGRADUATE TEXTS, V2nd edn
[8]  
De Marchi S, 2009, DOLOMIT RES NOTES AP, V2, P16
[9]   Interpolation in the limit of increasingly flat radial basis functions [J].
Driscoll, TA ;
Fornberg, B .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (3-5) :413-422
[10]   THE SPECTRUM OF KERNEL RANDOM MATRICES [J].
El Karoui, Noureddine .
ANNALS OF STATISTICS, 2010, 38 (01) :1-50