Structure-preserving Gauss methods for the nonlinear Schrodinger equation

被引:15
作者
Akrivis, Georgios [1 ,2 ]
Li, Dongfang [3 ,4 ]
机构
[1] Univ Ioannina, Dept Comp Sci & Engn, Ioannina 45110, Greece
[2] FORTH, Inst Appl & Computat Math, Iraklion 70013, Crete, Greece
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Peoples R China
关键词
Nonlinear Schrodinger equation; Gauss methods; Scalar auxiliary variable approach; Structure-preserving methods; L-2-conservative methods; Energy-conservative methods; Linearly implicit schemes; Continuous Galerkin method; FINITE-ELEMENT-METHOD; EXPONENTIAL INTEGRATORS; NUMERICAL SCHEMES; CONVERGENCE; 2ND-ORDER; SYSTEMS;
D O I
10.1007/s10092-021-00405-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the scalar auxiliary variable (SAV) reformulation of the nonlinear Schrodinger (NLS) equation to construct structure-preserving SAV-Gauss methods for the NLS equation, namely L-2-conservative methods satisfying a discrete analogue of the energy (the Hamiltonian) conservation of the equation. This is in contrast to Gauss methods for the standard form of the NLS equation that are L-2-conservative but not energy-conservative. We also discuss efficient linearizations of the new methods and their conservation properties.
引用
收藏
页数:25
相关论文
共 42 条
[1]  
Agrawal G. P., 2001, NONLINEAR FIBER OPTI
[2]   Solving the systems of equations arising in the discretization of some nonlinear PDE's by implicit Runge-Kutta methods [J].
Akrivis, G ;
Dougalis, VA ;
Karakashian, O .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (02) :251-287
[3]   ON FULLY DISCRETE GALERKIN METHODS OF 2ND-ORDER TEMPORAL ACCURACY FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
AKRIVIS, GD ;
DOUGALIS, VA ;
KARAKASHIAN, OA .
NUMERISCHE MATHEMATIK, 1991, 59 (01) :31-53
[4]   ENERGY-DECAYING EXTRAPOLATED RK-SAV METHODS FOR THE ALLEN-CAHN AND CAHN-HILLIARD EQUATIONS [J].
Akrivis, Georgios ;
Li, Buyang ;
li, Dongfang .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (06) :A3703-A3727
[5]   Energy-conserving methods for the nonlinear Schrodinger equation [J].
Barletti, L. ;
Brugnano, L. ;
Frasca Caccia, Gianluca ;
Iavernaro, F. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 318 :3-18
[6]   A relaxation scheme for the nonlinear Schrodinger equation [J].
Besse, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) :934-952
[7]   Relaxation scheme for the nonlinear Schrodinger equation and Davey-Stewartson systems [J].
Besse, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (12) :1427-1432
[8]   Energy-preserving methods for nonlinear Schrodinger equations [J].
Besse, Christophe ;
Descombes, Stephane ;
Dujardin, Guillaume ;
Lacroix-Violet, Ingrid .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) :618-653
[9]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[10]  
Brugnano L., 2016, Line integral methods for conservative problems, DOI [10.1201/b19319, DOI 10.1201/B19319]