Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image

被引:101
作者
Cai, Yaoming [1 ]
Zhang, Zijia [1 ]
Cai, Zhihua [1 ]
Liu, Xiaobo [2 ,3 ]
Jiang, Xinwei [1 ]
Yan, Qin [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 05期
基金
中国国家自然科学基金;
关键词
Graph convolutional networks (GCNs); hyperspectral image (HSI) clustering; kernel method; subspace clustering; BAND SELECTION; CLASSIFICATION;
D O I
10.1109/TGRS.2020.3018135
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) clustering is a challenging task due to the high complexity of HSI data. Subspace clustering has been proven to be powerful for exploiting the intrinsic relationship between data points. Despite the impressive performance in the HSI clustering, traditional subspace clustering methods often ignore the inherent structural information among data. In this article, we revisit the subspace clustering with graph convolution and present a novel subspace clustering framework called graph convolutional subspace clustering (GCSC) for robust HSI clustering. Specifically, the framework recasts the self-expressiveness property of the data into the non-Euclidean domain, which results in a more robust graph embedding dictionary. We show that traditional subspace clustering models are the special forms of our framework with the Euclidean data. On the basis of the framework, we further propose two novel subspace clustering models by using the Frobenius norm, namely efficient GCSC (EGCSC) and efficient kernel GCSC (EKGCSC). Each model has a globally optimal closed-form solution, making it easier to implement, train, and apply in practice. Extensive experiments strongly evidence that EGCSC and EKGCSC dramatically outperform current models on three popular HSI data sets consistently.
引用
收藏
页码:4191 / 4202
页数:12
相关论文
共 56 条
[1]   Geometric Deep Learning Going beyond Euclidean data [J].
Bronstein, Michael M. ;
Bruna, Joan ;
LeCun, Yann ;
Szlam, Arthur ;
Vandergheynst, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) :18-42
[2]  
Cai Y., 2018, PROC IEEEIFIP NETW O, P1, DOI DOI 10.1109/NOMS.2018.8406159
[3]   BS-Nets: An End-to-End Framework for Band Selection of Hyperspectral Image [J].
Cai, Yaoming ;
Liu, Xiaobo ;
Cai, Zhihua .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03) :1969-1984
[4]   Hierarchical ensemble of Extreme Learning Machine [J].
Cai, Yaoming ;
Liu, Xiaobo ;
Zhang, Yongshan ;
Cai, Zhihua .
PATTERN RECOGNITION LETTERS, 2018, 116 :101-106
[5]   Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis [J].
Cai, Yingfan ;
Cai, Xiaoyan ;
Wang, Qinglian ;
Wang, Ping ;
Zhang, Yu ;
Cai, Chaowei ;
Xu, Yanchao ;
Wang, Kunbo ;
Zhou, Zhongli ;
Wang, Chenxiao ;
Geng, Shuaipeng ;
Li, Bo ;
Dong, Qi ;
Hou, Yuqing ;
Wang, Heng ;
Ai, Peng ;
Liu, Zhen ;
Yi, Feifei ;
Sun, Minshan ;
An, Guoyong ;
Cheng, Jieru ;
Zhang, Yuanyuan ;
Shi, Qian ;
Xie, Yuanhui ;
Shi, Xinying ;
Chang, Ying ;
Huang, Feifei ;
Chen, Yun ;
Hong, Shimiao ;
Mi, Lingyu ;
Sun, Quan ;
Zhang, Lin ;
Zhou, Baoliang ;
Peng, Renhai ;
Zhang, Xiao ;
Liu, Fang .
PLANT BIOTECHNOLOGY JOURNAL, 2020, 18 (03) :814-828
[6]   Deep Self-Evolution Clustering [J].
Chang, Jianlong ;
Meng, Gaofeng ;
Wang, Lingfeng ;
Xiang, Shiming ;
Pan, Chunhong .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (04) :809-823
[7]   Sparse Subspace Clustering: Algorithm, Theory, and Applications [J].
Elhamifar, Ehsan ;
Vidal, Rene .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2765-2781
[8]   Sparse Feature Learning of Hyperspectral Imagery via Multiobjective-Based Extreme Learning Machine [J].
Fang, Xiaoping ;
Cai, Yaoming ;
Cai, Zhihua ;
Jiang, Xinwei ;
Chen, Zhikun .
SENSORS, 2020, 20 (05)
[9]   Advances in Spectral-Spatial Classification of Hyperspectral Images [J].
Fauvel, Mathieu ;
Tarabalka, Yuliya ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Tilton, James C. .
PROCEEDINGS OF THE IEEE, 2013, 101 (03) :652-675
[10]   New Frontiers in Spectral-Spatial Hyperspectral Image Classification The latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning [J].
Ghamisi, Pedram ;
Maggiori, Emmanuel ;
Li, Shutao ;
Souza, Roberto ;
Tarabalka, Yuliya ;
Moser, Gabriele ;
De Giorgi, Andrea ;
Fang, Leyuan ;
Chen, Yushi ;
Chi, Mingmin ;
Serpico, Sebastiano B. ;
Benediktsson, Jon Atli .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2018, 6 (03) :10-43