Graph Convolutional Subspace Clustering: A Robust Subspace Clustering Framework for Hyperspectral Image

被引:88
作者
Cai, Yaoming [1 ]
Zhang, Zijia [1 ]
Cai, Zhihua [1 ]
Liu, Xiaobo [2 ,3 ]
Jiang, Xinwei [1 ]
Yan, Qin [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Sch Automat, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Hubei Key Lab Adv Control & Intelligent Automat C, Wuhan 430074, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 05期
基金
中国国家自然科学基金;
关键词
Graph convolutional networks (GCNs); hyperspectral image (HSI) clustering; kernel method; subspace clustering; BAND SELECTION; CLASSIFICATION;
D O I
10.1109/TGRS.2020.3018135
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral image (HSI) clustering is a challenging task due to the high complexity of HSI data. Subspace clustering has been proven to be powerful for exploiting the intrinsic relationship between data points. Despite the impressive performance in the HSI clustering, traditional subspace clustering methods often ignore the inherent structural information among data. In this article, we revisit the subspace clustering with graph convolution and present a novel subspace clustering framework called graph convolutional subspace clustering (GCSC) for robust HSI clustering. Specifically, the framework recasts the self-expressiveness property of the data into the non-Euclidean domain, which results in a more robust graph embedding dictionary. We show that traditional subspace clustering models are the special forms of our framework with the Euclidean data. On the basis of the framework, we further propose two novel subspace clustering models by using the Frobenius norm, namely efficient GCSC (EGCSC) and efficient kernel GCSC (EKGCSC). Each model has a globally optimal closed-form solution, making it easier to implement, train, and apply in practice. Extensive experiments strongly evidence that EGCSC and EKGCSC dramatically outperform current models on three popular HSI data sets consistently.
引用
收藏
页码:4191 / 4202
页数:12
相关论文
共 56 条
  • [1] [Anonymous], 2018, P 32 AAAI C ARTIFICI, DOI DOI 10.1609/AAAI.V32I1.11604
  • [2] Geometric Deep Learning Going beyond Euclidean data
    Bronstein, Michael M.
    Bruna, Joan
    LeCun, Yann
    Szlam, Arthur
    Vandergheynst, Pierre
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) : 18 - 42
  • [3] Cai Y., 2018, 2018 IEEE International Conference on Communications (ICC), P1
  • [4] BS-Nets: An End-to-End Framework for Band Selection of Hyperspectral Image
    Cai, Yaoming
    Liu, Xiaobo
    Cai, Zhihua
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1969 - 1984
  • [5] Hierarchical ensemble of Extreme Learning Machine
    Cai, Yaoming
    Liu, Xiaobo
    Zhang, Yongshan
    Cai, Zhihua
    [J]. PATTERN RECOGNITION LETTERS, 2018, 116 : 101 - 106
  • [6] Genome sequencing of the Australian wild diploid species Gossypium australe highlights disease resistance and delayed gland morphogenesis
    Cai, Yingfan
    Cai, Xiaoyan
    Wang, Qinglian
    Wang, Ping
    Zhang, Yu
    Cai, Chaowei
    Xu, Yanchao
    Wang, Kunbo
    Zhou, Zhongli
    Wang, Chenxiao
    Geng, Shuaipeng
    Li, Bo
    Dong, Qi
    Hou, Yuqing
    Wang, Heng
    Ai, Peng
    Liu, Zhen
    Yi, Feifei
    Sun, Minshan
    An, Guoyong
    Cheng, Jieru
    Zhang, Yuanyuan
    Shi, Qian
    Xie, Yuanhui
    Shi, Xinying
    Chang, Ying
    Huang, Feifei
    Chen, Yun
    Hong, Shimiao
    Mi, Lingyu
    Sun, Quan
    Zhang, Lin
    Zhou, Baoliang
    Peng, Renhai
    Zhang, Xiao
    Liu, Fang
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2020, 18 (03) : 814 - 828
  • [7] Deep Self-Evolution Clustering
    Chang, Jianlong
    Meng, Gaofeng
    Wang, Lingfeng
    Xiang, Shiming
    Pan, Chunhong
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (04) : 809 - 823
  • [8] Sparse Subspace Clustering: Algorithm, Theory, and Applications
    Elhamifar, Ehsan
    Vidal, Rene
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2765 - 2781
  • [9] Sparse Feature Learning of Hyperspectral Imagery via Multiobjective-Based Extreme Learning Machine
    Fang, Xiaoping
    Cai, Yaoming
    Cai, Zhihua
    Jiang, Xinwei
    Chen, Zhikun
    [J]. SENSORS, 2020, 20 (05)
  • [10] Advances in Spectral-Spatial Classification of Hyperspectral Images
    Fauvel, Mathieu
    Tarabalka, Yuliya
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Tilton, James C.
    [J]. PROCEEDINGS OF THE IEEE, 2013, 101 (03) : 652 - 675