SINGULAR PERTURBATIONS OF BLASCHKE PRODUCTS AND CONNECTIVITY OF FATOU COMPONENTS

被引:4
|
作者
Canela, Jordi [1 ,2 ]
机构
[1] Univ Jaume 1, Inst Univ Matemat & Aplicac Castello IMAC, Av Vicent Sos Baynat S-N, Castellon de La Plana 12071, Spain
[2] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
关键词
Holomorphic dynamics; Blaschke products; McMullen-like Julia sets; singular perturbations; connectivity of Fatou components; PERTURBED RATIONAL MAPS; MCMULLEN MAPS; DYNAMICS; FAMILY;
D O I
10.3934/dcds.2017153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of this paper is to study the family of singular perturbations of Blaschke products given by B-a,B- lambda(z) = z(3) z-a/1-az +lambda/z(2). We focus on the study of these rational maps for parameters a in the punctured disk D+ and vertical bar lambda vertical bar small. We prove that, under certain conditions, all Fatou components of a singularly perturbed Blaschke product B-a, lambda have finite connectivity but there are components of arbitrarily large connectivity within its dynamical plane. Under the same conditions we prove that the Julia set is the union of countably many Cantor sets of quasicircles and uncountably many point components.
引用
收藏
页码:3567 / 3585
页数:19
相关论文
共 50 条
  • [11] Tautness and Fatou Components in ℙ2
    Han Peters
    Crystal Zeager
    Journal of Geometric Analysis, 2012, 22 : 934 - 941
  • [12] Escaping Fatou components with disjoint hyperbolic limit sets
    Beltrami, Veronica
    Benini, Anna Miriam
    Saracco, Alberto
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (02)
  • [13] BLASCHKE PRODUCTS IN LIPSCHITZ SPACES
    Jevtic, Miroljub
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 : 689 - 705
  • [14] Centralizers of finite Blaschke products
    Arteaga, C
    BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 2000, 31 (02): : 163 - 173
  • [15] On a characterization of finite Blaschke products
    Fricain, Emmanuel
    Mashreghi, Javad
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (03) : 362 - 368
  • [16] Centralizers of finite Blaschke products
    Carlos Arteaga
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 2000, 31 : 163 - 173
  • [17] Fatou components and singularities of meromorphic functions
    Baranski, Krzysztof
    Fagella, Nuria
    Jarque, Xavier
    Karpinska, Boguslawa
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 633 - 654
  • [18] Fatou components with punctured limit sets
    Boc-Thaler, Luka
    Fornaess, John Erik
    Peters, Han
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 1380 - 1393
  • [19] Cyclic Blaschke products for composition operators
    Gallardo-Gutierrez, Eva A.
    Gorkin, Pamela
    REVISTA MATEMATICA IBEROAMERICANA, 2009, 25 (02) : 447 - 470
  • [20] Blaschke products and proper holomorphic mappings
    Christian Henriksen
    The Journal of Geometric Analysis, 2001, 11 (4) : 619 - 625