Pure-strategy epsilon-Nash equilibrium in n-person nonzero-sum discontinuous games

被引:7
作者
Ziad, A
机构
[1] Ctr. de Rech. en Econ. Math. et E., Université de Caen, 14032, Caen Cedex
关键词
D O I
10.1006/game.1997.0552
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we consider n-person nonzero-sum games where the strategy spaces of players are compact subsets of RS. The main result states that if the payoff functions are semicontinuous and strongly quasi-concave then an epsilon-Nash equilibrium in pure strategies exists for every positive epsilon.
引用
收藏
页码:238 / 249
页数:12
相关论文
共 50 条
[41]   RL-ARNE: A Reinforcement Learning Algorithm for Computing Average Reward Nash Equilibrium of Nonzero-Sum Stochastic Games [J].
Sahabandu, Dinuka ;
Moothedath, Shana ;
Allen, Joey ;
Bushnell, Linda ;
Lee, Wenke ;
Poovendran, Radha .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (11) :7824-7831
[42]   The uniqueness of pure-strategy Nash equilibrium in rent-seeking games with risk-averse players [J].
Takeshi Yamazaki .
Public Choice, 2009, 139 :335-342
[43]   The uniqueness of pure-strategy Nash equilibrium in rent-seeking games with risk-averse players [J].
Yamazaki, Takeshi .
PUBLIC CHOICE, 2009, 139 (3-4) :335-342
[44]   ON THE NUMERICAL SOLUTION OF N-PLAYER NONZERO-SUM DIFFERENTIAL GAMES VIA NASH SOLUTION CONCEPT. [J].
Dolezal, J. ;
Thoma, M. .
Problems of control and information theory, 1979, 8 (5-6) :371-385
[45]   A Mixed 0-1 Linear Programming Approach to the Computation of All Pure-Strategy Nash Equilibria of a Finite n-Person Game in Normal Form [J].
Wu, Zhengtian ;
Dang, Chuangyin ;
Karimi, Hamid Reza ;
Zhu, Changan ;
Gao, Qing .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
[46]   Model-based reinforcement learning for on-line feedback-Nash equilibrium solution of N-player nonzero-sum differential games [J].
Kamalapurkar, Rushikesh ;
Klotz, Justin ;
Dixon, Warren E. .
2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, :3000-3005
[47]   Discontinuous payoffs, shared resources, and games of fiscal competition: existence of pure strategy Nash equilibrium [J].
Rothstein, Paul .
JOURNAL OF PUBLIC ECONOMIC THEORY, 2007, 9 (02) :335-368
[48]   Finding a nash equilibrium in noncooperative N-person games by solving a sequence of linear stationary point problems [J].
van, den Elzen, A. ;
Talman, D. .
ZOR. Zeitschrift Fuer Operations Research, 1994, 40 (03)
[49]   Finding a nash equilibrium in noncooperative N-person games by solving a sequence of linear stationary point problems [J].
van, den Elzen, Antoon ;
Talman, Dolf .
1600, Physica-Verlag GmbH & Co, Heidelberg, Ger (39)
[50]   On Nash Equilibrium Strategy of Two-person Zero-sum Games with Trapezoidal Fuzzy Payoffs [J].
Dutta, Bapi ;
Gupta, S. K. .
FUZZY INFORMATION AND ENGINEERING, 2014, 6 (03) :299-314