Pure-strategy epsilon-Nash equilibrium in n-person nonzero-sum discontinuous games

被引:7
作者
Ziad, A
机构
[1] Ctr. de Rech. en Econ. Math. et E., Université de Caen, 14032, Caen Cedex
关键词
D O I
10.1006/game.1997.0552
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we consider n-person nonzero-sum games where the strategy spaces of players are compact subsets of RS. The main result states that if the payoff functions are semicontinuous and strongly quasi-concave then an epsilon-Nash equilibrium in pure strategies exists for every positive epsilon.
引用
收藏
页码:238 / 249
页数:12
相关论文
共 50 条
[21]   On pure stationary almost Markov Nash equilibria in nonzero-sum ARAT stochastic games [J].
Anna Jaśkiewicz ;
Andrzej S. Nowak .
Mathematical Methods of Operations Research, 2015, 81 :169-179
[22]   On pure stationary almost Markov Nash equilibria in nonzero-sum ARAT stochastic games [J].
Jaskiewicz, Anna ;
Nowak, Andrzej S. .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2015, 81 (02) :169-179
[23]   EXISTENCE OF A NASH EQUILIBRIUM POINT FOR N-PERSON DIFFERENTIAL GAMES [J].
SCALZO, RC ;
WILLIAMS, SA .
APPLIED MATHEMATICS AND OPTIMIZATION, 1976, 2 (03) :271-278
[24]   On a new class of nonzero-sum discounted stochastic games having stationary Nash equilibrium points [J].
Andrzej S. Nowak .
International Journal of Game Theory, 2003, 32 :121-132
[25]   Nash Equilibrium Seeking in Nonzero-Sum Games: A Prescribed-Time Fuzzy Control Approach [J].
Zhang, Yan ;
Chadli, Mohammed ;
Xiang, Zhengrong .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (12) :6929-6938
[26]   On a new class of nonzero-sum discounted stochastic games having stationary Nash equilibrium points [J].
Nowak, AS .
INTERNATIONAL JOURNAL OF GAME THEORY, 2003, 32 (01) :121-132
[27]   On epsilon-equilibrium in noncooperative functional operator n-person games [J].
Chernov, A. V. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (01) :316-328
[28]   Computation of the nash equilibrium selected by the tracing procedure in N-person games [J].
Herings, PJJ ;
van den Elzen, A .
GAMES AND ECONOMIC BEHAVIOR, 2002, 38 (01) :89-117
[29]   The existence of nash equilibrium in n-person games with C-concavity [J].
Kim, WK ;
Lee, KH .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (8-9) :1219-1228
[30]   Linear-quadratic N-person Nonzero-sum Repeated Game: Complete Information and Incomplete Information [J].
Feng, Siqi .
2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, :1224-1229