The Study of Plasticized Sodium Ion Conducting Polymer Blend Electrolyte Membranes Based on Chitosan/Dextran Biopolymers: Ion Transport, Structural, Morphological and Potential Stability

被引:50
|
作者
Asnawi, Ahmad S. F. M. [1 ]
Aziz, Shujahadeen B. [2 ,3 ]
Brevik, Iver [4 ]
Brza, Mohamad A. [2 ]
Yusof, Yuhanees M. [1 ]
Alshehri, Saad M. [5 ]
Ahamad, Tansir [5 ]
Kadir, M. F. Z. [6 ]
机构
[1] Univ Kuala Lumpur Malaysian Inst Chem & Bioengn T, Chem Engn Sect, Alor Gajah 78000, Malacca, Malaysia
[2] Univ Sulaimani, Dept Phys, Coll Sci, Hameedmajid Adv Polymer Mat Res Lab, Qlyasan St, Sulaimani 46001, Kurdistan Reg G, Iraq
[3] Komar Univ Sci & Technol, Dept Civil Engn, Coll Engn, Sulaimani 46001, Kurdistan Reg G, Iraq
[4] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7491 Trondheim, Norway
[5] King Saud Univ, Dept Chem, POB 2455, Riyadh 11451, Saudi Arabia
[6] Univ Malaya, Ctr Fdn Studies Sci, Kuala Lumpur 50603, Malaysia
关键词
dextran-chitosan blend; sodium triflate; FTIR study; impedance analysis; circuit modeling; transport properties; dielectric analysis; TNM and LSV studies; ELECTRICAL-PROPERTIES; AMMONIUM BROMIDE; DIELECTRIC-PROPERTIES; GEL ELECTROLYTE; SOLAR-CELL; IMPEDANCE; SUPERCAPACITORS; GLYCEROL; DEXTRAN; OPTIMIZATION;
D O I
10.3390/polym13030383
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The polymer electrolyte system of chitosan/dextran-NaTf with various glycerol concentrations is prepared in this study. The electrical impedance spectroscopy (EIS) study shows that the addition of glycerol increases the ionic conductivity of the electrolyte at room temperature. The highest conducting plasticized electrolyte shows the maximum DC ionic conductivity of 6.10 x 10(-5) S/cm. Field emission scanning electron microscopy (FESEM) is used to investigate the effect of plasticizer on film morphology. The interaction between the electrolyte components is confirmed from the existence of the O-H, C-H, carboxamide, and amine groups. The XRD study is used to determine the degree of crystallinity. The transport parameters of number density (n), ionic mobility (mu), and diffusion coefficient (D) of ions are determined using the percentage of free ions, due to the asymmetric vibration (upsilon(as)(SO3)) and symmetric vibration (upsilon(s)(SO3)) bands. The dielectric property and relaxation time are proved the non-Debye behavior of the electrolyte system. This behavior model is further verified by the existence of the incomplete semicircle arc from the Argand plot. Transference numbers of ion (t(ion)) and electron (t(e)) for the highest conducting plasticized electrolyte are identified to be 0.988 and 0.012, respectively, confirming that the ions are the dominant charge carriers. The t(ion) value are used to further examine the contribution of ions in the values of the diffusion coefficient and mobility of ions. Linear sweep voltammetry (LSV) shows the potential window for the electrolyte is 2.55 V, indicating it to be a promising electrolyte for application in electrochemical energy storage devices.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 50 条
  • [31] ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte
    Dimri, Mukesh Chandra
    Kumar, Deepak
    Aziz, Shujahadeen B.
    Mishra, Kuldeep
    IONICS, 2021, 27 (03) : 1143 - 1157
  • [32] ZnFe2O4 nanoparticles assisted ion transport behavior in a sodium ion conducting polymer electrolyte
    Mukesh Chandra Dimri
    Deepak Kumar
    Shujahadeen B. Aziz
    Kuldeep Mishra
    Ionics, 2021, 27 : 1143 - 1157
  • [33] Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers
    Rajeswari, Natarajan
    Selvasekarapandian, Subramanian
    Prabu, Moni
    Karthikeyan, Shunmugavel
    Sanjeeviraja, C.
    BULLETIN OF MATERIALS SCIENCE, 2013, 36 (02) : 333 - 339
  • [34] Magnesium ion conducting polyvinyl alcohol–polyvinyl pyrrolidone-based blend polymer electrolyte
    Mangalam Ramaswamy
    Thamilselvan Malayandi
    Selvasekarapandian Subramanian
    Jayakumar Srinivasalu
    Manjuladevi Rangaswamy
    Ionics, 2017, 23 : 1771 - 1781
  • [35] Study on morphological properties and mass transport parameters of ORR in recast ion-exchange polymer electrolyte membranes
    Lee, K
    Ishihara, A
    Mitsushima, S
    Kamiya, N
    Ota, K
    FUEL CELL SCIENCE, ENGINEERING AND TECHNOLOGY, 2003, : 241 - 243
  • [36] Plasticized Sodium-Ion Conducting PVA Based Polymer Electrolyte for Electrochemical Energy Storage-EEC Modeling, Transport Properties, and Charge-Discharge Characteristics
    Aziz, Shujahadeen B.
    Nofal, Muaffaq M.
    Abdulwahid, Rebar T.
    O. Ghareeb, Hewa
    Dannoun, Elham M. A.
    M. Abdullah, Ranjdar
    Hamsan, M. H.
    Kadir, M. F. Z.
    POLYMERS, 2021, 13 (05)
  • [37] Design of proton conducting solid biopolymer blend electrolytes based on chitosan-potato starch biopolymers: Deep approaches to structural and ion relaxation dynamics of H+ ion
    Abdulwahid, Rebar T.
    Aziz, Shujahadeen B.
    Kadir, Mohd F. Z.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (37)
  • [38] Structural and energy storage behavior of ion conducting biopolymer blend electrolytes based on methylcellulose: Dextran polymers
    Hadi, Jihad M.
    Aziz, Shujahadeen B.
    Brza, M. A.
    Kadir, M. F. Z.
    Abdulwahid, Rebar T.
    Al-Asbahi, Bandar Ali
    Ahmed, Abdullah Ahmed Ali
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (12) : 9273 - 9285
  • [39] Structural, Morphological and Electrochemical Impedance Study of CS:LiTf based Solid Polymer Electrolyte: Reformulated Arrhenius Equation for Ion Transport Study
    Aziz, Shujahadeen B.
    Kadir, M. F. Z.
    Abidin, Z. H. Z.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (11): : 9228 - 9244
  • [40] High-performance sodium ion conducting gel polymer electrolyte based on a biodegradable polymer polycaprolactone
    Sehrawat, Poonam
    Parveen, Shadma
    Hashmi, S. A.
    ENERGY STORAGE, 2023, 5 (02)