Optimizing future biodiversity sampling by citizen scientists

被引:64
作者
Callaghan, Corey T. [1 ,2 ,3 ]
Poore, Alistair G. B. [2 ]
Major, Richard E. [1 ,3 ]
Rowley, Jodi J. L. [1 ,3 ]
Cornwell, William K. [1 ,2 ]
机构
[1] UNSW Sydney, Sch Biol Earth & Environm Sci, Ctr Ecosyst Sci, Sydney, NSW 2052, Australia
[2] UNSW Sydney, Ecol & Evolut Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia
[3] Australian Museum, Australian Museum Res Inst, Sydney, NSW 2010, Australia
关键词
citizen science; biodiversity; spatial and temporal sampling; dynamic models; predictive modelling; SCIENCE DATA; CONSERVATION SCIENCE; TRENDS; EBIRD; BIAS; COMPLETENESS; INTEGRATION; POPULATIONS; PROGRAM; SPACE;
D O I
10.1098/rspb.2019.1487
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We are currently in the midst of Earth's sixth extinction event, and measuring biodiversity trends in space and time is essential for prioritizing limited resources for conservation. At the same time, the scope of the necessary biodiversity monitoring is overwhelming funding for professional scientific monitoring. In response, scientists are increasingly using citizen science data to monitor biodiversity. But citizen science data are 'noisy', with redundancies and gaps arising from unstructured human behaviours in space and time. We ask whether the information content of these data can be maximized for the express purpose of trend estimation. We develop and execute a novel framework which assigns every citizen science sampling event a marginal value, derived from the importance of an observation to our understanding of overall population trends. We then make this framework predictive, estimating the expected marginal value of future biodiversity observations. We find that past observations are useful in forecasting where high-value observations will occur in the future. Interestingly, we find high value in both 'hotspots', which are frequently sampled locations, and 'coldspots', which are areas far from recent sampling, suggesting that an optimal sampling regime balances 'hotspot' sampling with a spread across the landscape.
引用
收藏
页数:9
相关论文
共 84 条
[1]  
[Anonymous], 2011, P 2011 44 HAW INT C, DOI [10.1109/HICSS.2011.207, DOI 10.1109/HICSS.2011.207]
[2]  
[Anonymous], 2018, R:_A_Language_and_Environment_for_Statistical_Computing
[3]   New diatoms from the American West-A tribute to citizen science [J].
Bahls, Loren L. .
PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA, 2014, 163 :61-84
[4]   Toward monitoring global biodiversity [J].
Baillie, Jonathan E. M. ;
Collen, Ben ;
Amin, Rajan ;
Akcakaya, H. Resit ;
Butchart, Stuart H. M. ;
Brummitt, Neil ;
Meagher, Thomas R. ;
Ram, Mala ;
Hilton-Taylor, Craig ;
Mace, Georgina M. .
CONSERVATION LETTERS, 2008, 1 (01) :18-26
[5]   The changing landscape of conservation science funding in the United States [J].
Bakker, Victoria J. ;
Baum, Julia K. ;
Brodie, Jedediah F. ;
Salomon, Anne K. ;
Dickson, Brett G. ;
Gibbs, Holly K. ;
Jensen, Olaf P. ;
McIntyre, Peter B. .
CONSERVATION LETTERS, 2010, 3 (06) :435-444
[6]  
Barlow K, 1980, REGRESSION DIAGNOSTI
[7]   Citizen science reveals trends in bat populations: The National Bat Monitoring Programme in Great Britain [J].
Barlow, K. E. ;
Briggs, P. A. ;
Haysom, K. A. ;
Hutson, A. M. ;
Lechiara, N. L. ;
Racey, P. A. ;
Walsh, A. L. ;
Langton, S. D. .
BIOLOGICAL CONSERVATION, 2015, 182 :14-26
[8]   Statistical solutions for error and bias in global citizen science datasets [J].
Bird, Tomas J. ;
Bates, Amanda E. ;
Lefcheck, Jonathan S. ;
Hill, Nicole A. ;
Thomson, Russell J. ;
Edgar, Graham J. ;
Stuart-Smith, Rick D. ;
Wotherspoon, Simon ;
Krkosek, Martin ;
Stuart-Smith, Jemina F. ;
Pecl, Gretta T. ;
Barrett, Neville ;
Frusher, Stewart .
BIOLOGICAL CONSERVATION, 2014, 173 :144-154
[9]   Distorted Views of Biodiversity: Spatial and Temporal Bias in Species Occurrence Data [J].
Boakes, Elizabeth H. ;
McGowan, Philip J. K. ;
Fuller, Richard A. ;
Ding Chang-qing ;
Clark, Natalie E. ;
O'Connor, Kim ;
Mace, Georgina M. .
PLOS BIOLOGY, 2010, 8 (06)
[10]  
Bollinger G., 1981, REGRESSION DIAGNOSTI