Computational Fluid Dynamics Simulation of Regime Transition in Bubble Columns Incorporating the Dual-Bubble-Size Model

被引:25
作者
Chen, Jianhua [1 ,2 ]
Yang, Ning [1 ]
Ge, Wei [1 ]
Li, Jinghai [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
DRAG FORCE FORMULATION; FLOW-REGIME; STABILITY CONDITION; TURBULENT-FLOW; CFD SIMULATION; REACTORS; HYDRODYNAMICS; COALESCENCE; LIQUID;
D O I
10.1021/ie801644d
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This article investigates the two regime transition points for bubble columns with the so-called dual-bubble-size (DBS) model featuring the utilization of a stability condition to analyze the compromise between dominant mechanisms. Our previous work indicated that the second point could be reasonably predicted and physically interpreted by the DBS model for various gas-liquid systems. This work further clarifies the relationship between the bifurcation of energy dissipation and of structural parameters and the regime transition. It is found that the bifurcation of energy dissipation exists for both the gas-liquid and gas-solid systems and call be used to predict and understand regime transition in multiphase flow. Then the DBS model is incorporated into the two-fluid model for calculating interphase coupling, and I computational fluid dynamics (CFD) calculation is performed to simulate I bubble column. The "shoulder" on the gas hold-up curve can be observed in the simulation with the new coupling method, and the second transition point predicted from the CFD simulation is consistent with experiments and the calculation of the DBS model. Sparger effects are investigated through the two simulation cases for uniform aeration and local aeration, and the radial distribution of local hydrodynamic parameters is comparable with experimental data in the literature.
引用
收藏
页码:8172 / 8179
页数:8
相关论文
共 27 条
[1]  
[Anonymous], 1975, TURBULENCE
[2]   Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column [J].
Camarasa, E ;
Vial, C ;
Poncin, S ;
Wild, G ;
Midoux, N ;
Bouillard, J .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 1999, 38 (4-6) :329-344
[3]   Modeling of Regime Transition in Bubble Columns with Stability Condition [J].
Chen, Jianhua ;
Yang, Ning ;
Ge, Wei ;
Li, Jinghai .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (01) :290-301
[4]   Three-dimensional simulation of bubble column flows with bubble coalescence and breakup [J].
Chen, P ;
Dudukovic, MP ;
Sanyal, J .
AICHE JOURNAL, 2005, 51 (03) :696-712
[5]   FLOW STRUCTURE IN A 3-DIMENSIONAL BUBBLE-COLUMN AND 3-PHASE FLUIDIZED-BED [J].
CHEN, RC ;
REESE, J ;
FAN, LS .
AICHE JOURNAL, 1994, 40 (07) :1093-1104
[6]  
Clift R., 2005, Bubbles, Drops, and Particles
[7]  
Fan L.S., 1990, BUBBLE WAKE DYNAMICS
[8]   Physical mapping of fluidization regimes - the EMMS approach [J].
Ge, W ;
Li, JH .
CHEMICAL ENGINEERING SCIENCE, 2002, 57 (18) :3993-4004
[9]  
GRACE JR, 1976, T I CHEM ENG-LOND, V54, P167
[10]  
Joshi JB, 2001, ADV CHEM EN, V26, P1, DOI 10.1016/S0065-2377(01)26002-5