The between-farm transmission dynamics of porcine epidemic diarrhoea virus: A short-term forecast modelling comparison and the effectiveness of control strategies

被引:7
作者
Galvis, Jason A. [1 ]
Jones, Chris M. [2 ]
Prada, Joaquin M. [3 ]
Corzo, Cesar A. [4 ]
Machado, Gustavo [1 ,2 ]
机构
[1] Coll Vet Med, Dept Populat Hlth & Pathobiol, Raleigh, NC 27695 USA
[2] North Carolina State Univ, Ctr Geospatial Analyt, Raleigh, NC USA
[3] Univ Surrey, Sch Vet Med, Fac Hlth & Med Sci, Guildford, Surrey, England
[4] Univ Minnesota, Coll Vet Med, Vet Populat Med Dept, St Paul, MN 55108 USA
基金
美国食品与农业研究所;
关键词
disease surveillance; mechanistic modelling; swine disease spread; transmission dynamics; RESPIRATORY SYNDROME VIRUS; UNITED-STATES; INFECTION; DISEASE; SPREAD; FEED; TIME; SIMULATION; CHALLENGES; MOVEMENTS;
D O I
10.1111/tbed.13997
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
A limited understanding of the transmission dynamics of swine disease is a significant obstacle to prevent and control disease spread. Therefore, understanding between-farm transmission dynamics is crucial to developing disease forecasting systems to predict outbreaks that would allow the swine industry to tailor control strategies. Our objective was to forecast weekly porcine epidemic diarrhoea virus (PEDV) outbreaks by generating maps to identify current and future PEDV high-risk areas, and simulating the impact of control measures. Three epidemiological transmission models were developed and compared: a novel epidemiological modelling framework was developed specifically to model disease spread in swine populations, PigSpread, and two models built on previously developed ecosystems, SimInf (a stochastic disease spread simulations) and PoPS (Pest or Pathogen Spread). The models were calibrated on true weekly PEDV outbreaks from three spatially related swine production companies. Prediction accuracy across models was compared using the receiver operating characteristic area under the curve (AUC). Model outputs had a general agreement with observed outbreaks throughout the study period. PoPS had an AUC of 0.80, followed by PigSpread with 0.71, and SimInf had the lowest at 0.59. Our analysis estimates that the combined strategies of herd closure, controlled exposure of gilts to live viruses (feedback) and on-farm biosecurity reinforcement reduced the number of outbreaks. On average, 76% to 89% reduction was seen in sow farms, while in gilt development units (GDU) was between 33% to 61% when deployed to sow and GDU farms located in probabilistic high-risk areas. Our multi-model forecasting approach can be used to prioritize surveillance and intervention strategies for PEDV and other diseases potentially leading to more resilient and healthier pig production systems.
引用
收藏
页码:396 / 412
页数:17
相关论文
共 1 条