Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

被引:16
作者
Chung, Jeyon [1 ,2 ]
Hyon, Jinho [1 ,2 ]
Park, Kyung-Sun [1 ,2 ]
Cho, Boram [1 ,2 ]
Baek, Jangmi [1 ,2 ]
Kim, Jueun [1 ,2 ]
Lee, Sang Uck [3 ]
Sung, Myung Mo [1 ,2 ]
Kang, Youngjong [1 ,2 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Dept Chem, 222 Wangsimni Ro, Seoul 04763, South Korea
[2] Hanyang Univ, Inst Nano Sci & Technol, 222 Wangsimni Ro, Seoul 04763, South Korea
[3] Hanyang Univ, Dept Chem & Appl Chem, 55 Hanyangdaehak Ro, Ansan 15588, Gyeonggi Do, South Korea
关键词
HABIT CONTROLLING FACTOR; ATTACHMENT ENERGY; SINGLE-CRYSTALS; THIN-FILM; ORIENTATION; INTERFACES;
D O I
10.1038/srep23108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Organic semiconductors including rubrene, Alq(3), copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (T-m > 300 degrees C) are melted and crystallized at low temperature (T-e = 40.8-133 degrees C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
Askeland Donald, 2010, SCI ENG MAT
[2]   TOWARD AN ABINITIO DERIVATION OF CRYSTAL MORPHOLOGY [J].
BERKOVITCHYELLIN, Z .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1985, 107 (26) :8239-8253
[3]   Poly (3-hexylthiophene) fibers for photovoltaic applications [J].
Berson, Solenn ;
De Bettignies, Remi ;
Bailly, Severine ;
Guillerez, Stephane .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (08) :1377-1384
[4]   Introducing organic nanowire transistors [J].
Briseno, Alejandro L. ;
Mannsfeld, Stefan C. B. ;
Jenekhe, Samson A. ;
Bao, Zhenan ;
Xia, Younan .
MATERIALS TODAY, 2008, 11 (04) :38-47
[5]   Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials [J].
Carriazo, Daniel ;
Concepcion Serrano, Maria ;
Concepcion Gutierrez, Maria ;
Luisa Ferrer, Maria ;
del Monte, Francisco .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (14) :4996-5014
[6]   Control of molecular and microdomain orientation in a semicrystalline block copolymer thin film by epitaxy [J].
De Rosa, C ;
Park, C ;
Lotz, B ;
Wittmann, JC ;
Fetters, LJ ;
Thomas, EL .
MACROMOLECULES, 2000, 33 (13) :4871-4876
[7]   Microdomain patterns from directional eutectic solidification and epitaxy [J].
De Rosa, C ;
Park, C ;
Thomas, EL ;
Lotz, B .
NATURE, 2000, 405 (6785) :433-437
[8]   APPLICATION OF BRAVAIS-FRIEDEL-DONNAY-HARKER, ATTACHMENT ENERGY AND ISING-MODELS TO PREDICTING AND UNDERSTANDING THE MORPHOLOGY OF MOLECULAR-CRYSTALS [J].
DOCHERTY, R ;
CLYDESDALE, G ;
ROBERTS, KJ ;
BENNEMA, P .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1991, 24 (02) :89-99
[9]   EPITAXY AND STRUCTURE OF PARAFFIN DILUENT EUTECTICS [J].
DORSET, DL ;
HANLON, J ;
KARET, G .
MACROMOLECULES, 1989, 22 (05) :2169-2176
[10]  
Elliott R., 1983, EUTECTIC SOLIDIFICAT