Ground State of the Universe and the Cosmological Constant. A Nonperturbative Analysis

被引:19
作者
Husain, Viqar [1 ]
Qureshi, Babar [2 ]
机构
[1] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
[2] LUMS Sch Sci & Engn, Dept Phys, Lahore, Pakistan
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1103/PhysRevLett.116.061302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The physical Hamiltonian of a gravity-matter system depends on the choice of time, with the vacuum naturally identified as its ground state. We study the expanding Universe with scalar field in the volume time gauge. We show that the vacuum energy density computed from the resulting Hamiltonian is a nonlinear function of the cosmological constant and time. This result provides a new perspective on the relation between time, the cosmological constant, and vacuum energy.
引用
收藏
页数:5
相关论文
共 14 条
  • [1] [Anonymous], CAMBRIDGE MONOGRAPHS
  • [2] Burgess CP, 2015, POST-PLANCK COSMOLOGY, P149
  • [3] The Cosmological Constant
    Carroll S.M.
    [J]. Living Reviews in Relativity, 2001, 4 (1)
  • [4] Polymer inflation
    Hassan, Syed Moeez
    Husain, Viqar
    Seahra, Sanjeev S.
    [J]. PHYSICAL REVIEW D, 2015, 91 (06):
  • [5] A small cosmological constant due to non-perturbative quantum effects
    Holland, Jan
    Hollands, Stefan
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (12)
  • [6] Time and a Physical Hamiltonian for Quantum Gravity
    Husain, Viqar
    Pawlowski, Tomasz
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (14)
  • [7] TIME, VACUUM ENERGY, AND THE COSMOLOGICAL CONSTANT
    Husain, Viqar
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2009, 18 (14): : 2265 - 2268
  • [8] HAMILTONIAN-FORMALISM AND GAUGE-INVARIANCE FOR LINEAR PERTURBATIONS IN INFLATION
    LANGLOIS, D
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (02) : 389 - 407
  • [9] Solution to the cosmological-constant problem in a Regge quantum gravity model
    Mikovic, A.
    Vojinovic, M.
    [J]. EPL, 2015, 110 (04)
  • [10] INDIRECT EVIDENCE FOR QUANTUM-GRAVITY
    PAGE, DN
    GEILKER, CD
    [J]. PHYSICAL REVIEW LETTERS, 1981, 47 (14) : 979 - 982