Simulated annealing for maximum A Posteriori parameter estimation of hidden Markov models

被引:19
|
作者
Andrieu, C [1 ]
Doucet, A [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian estimation; data augmentation; hidden Markov models; maximum a posteriori; simulated annealing;
D O I
10.1109/18.841176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hidden Markov models are mixture models in which the populations from one observation to the next are selected according to an unobserved finite state-space Markov chain. Given a realization of the observation process, our aim is to estimate both the parameters of the Markov chain and of the mixture model in a Bayesian framework. In this paper, wt present an original simulated annealing algorithm which, in the same way as the EM (Expectation-Maximization) algorithm, relies on data augmentation, and is based on stochastic simulation of the hidden Markov chain. This algorithm is shown to converge toward the set of Maximum A Posteriori (MAP) parameters under suitable regularity conditions.
引用
收藏
页码:994 / 1004
页数:11
相关论文
共 50 条
  • [41] Computational issues in parameter estimation for hidden Markov models with template model builder
    Bacri, Timothee
    Berentsen, Geir D.
    Bulla, Jan
    Stove, Bard
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (18) : 3421 - 3457
  • [42] Cost function based on hidden Markov models for parameter estimation of chaotic systems
    Shekofteh, Yasser
    Jafari, Sajad
    Rajagopal, Karthikeyan
    SOFT COMPUTING, 2019, 23 (13) : 4765 - 4776
  • [43] Cost function based on hidden Markov models for parameter estimation of chaotic systems
    Yasser Shekofteh
    Sajad Jafari
    Karthikeyan Rajagopal
    Soft Computing, 2019, 23 : 4765 - 4776
  • [44] ESTIMATION OF THE VARIANCE FOR THE MAXIMUM LIKELIHOOD ESTIMATES IN NORMAL MIXTURE MODELS AND NORMAL HIDDEN MARKOV MODELS
    Iqbal, Muhammad
    Nishi, Akihiro
    Kikuchi, Yasuki
    Nomakuchi, Kentaro
    JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS, 2011, 24 (01): : 39 - 66
  • [45] A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation
    Vera, J. Fernando
    Diaz-Garcia, Jose A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (12) : 5055 - 5065
  • [46] Weighting hidden Markov models for maximum discrimination
    Karchin, R
    Hughey, R
    BIOINFORMATICS, 1998, 14 (09) : 772 - 782
  • [47] Hybrid Simulated Annealing and Its Application to Optimization of Hidden Markov Models for Visual Speech Recognition
    Lee, Jong-Seok
    Park, Cheol Hoon
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2010, 40 (04): : 1188 - 1196
  • [48] Hidden Markov Models for Pose Estimation
    Czuni, Laszlo
    Nagy, Amr M.
    PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 598 - 603
  • [49] Blind estimation of hidden Markov models
    Su, J
    Hu, AQ
    Wang, J
    He, ZY
    ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 2485 - 2488
  • [50] Recursive estimation of Hidden Markov Models
    Gerencser, Laszlo
    Molnar-Saska, Gabor
    Orlovits, Zsanett
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 1209 - 1214