Simulated annealing for maximum A Posteriori parameter estimation of hidden Markov models

被引:19
|
作者
Andrieu, C [1 ]
Doucet, A [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian estimation; data augmentation; hidden Markov models; maximum a posteriori; simulated annealing;
D O I
10.1109/18.841176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hidden Markov models are mixture models in which the populations from one observation to the next are selected according to an unobserved finite state-space Markov chain. Given a realization of the observation process, our aim is to estimate both the parameters of the Markov chain and of the mixture model in a Bayesian framework. In this paper, wt present an original simulated annealing algorithm which, in the same way as the EM (Expectation-Maximization) algorithm, relies on data augmentation, and is based on stochastic simulation of the hidden Markov chain. This algorithm is shown to converge toward the set of Maximum A Posteriori (MAP) parameters under suitable regularity conditions.
引用
收藏
页码:994 / 1004
页数:11
相关论文
共 50 条
  • [31] Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation
    Robert, CP
    Titterington, DM
    STATISTICS AND COMPUTING, 1998, 8 (02) : 145 - 158
  • [32] Margin-Enhanced Maximum Mutual Information Estimation for Hidden Markov Models
    Kim, Sungwoong
    Yun, Sungrack
    Yoo, Chang D.
    ISIE: 2009 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, 2009, : 1336 - 1340
  • [33] Fast, approximate maximum a posteriori probability parameter estimation
    Naval Undersea Warfare Cent, Newport, United States
    IEEE Signal Process Lett, 4 (96-99):
  • [34] Reparameterization strategies for hidden Markov models and Bayesian approaches to maximum likelihood estimation
    CHRISTIAN P. ROBERT
    D. M. TITTERINGTON
    Statistics and Computing, 1998, 8 : 145 - 158
  • [35] Fast, approximate maximum a posteriori probability parameter estimation
    Harrison, BF
    Tufts, DW
    Vaccaro, RJ
    IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (04) : 96 - 99
  • [36] Quasi-Newton method for maximum likelihood estimation of hidden Markov models
    Cappe, O
    Buchoux, V
    Moulines, E
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2265 - 2268
  • [37] Maximum likelihood estimation of hidden Markov processes
    Frydman, H
    Lakner, P
    ANNALS OF APPLIED PROBABILITY, 2003, 13 (04): : 1296 - 1312
  • [38] Maximum a posteriori estimation for Markov chains based on Gaussian Markov random fields
    Wu, H.
    Noe, F.
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1659 - 1667
  • [39] Parameter estimation of multi-dimensional hidden Markov models - A scalable approach
    Joshi, D
    Li, J
    Wang, JZ
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 2901 - 2904
  • [40] ACO-based BW algorithm for parameter estimation of hidden Markov models
    Wang, Qingmiao
    Ju, Shiguang
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2011, 41 (3-4) : 281 - 286