Simulated annealing for maximum A Posteriori parameter estimation of hidden Markov models

被引:19
|
作者
Andrieu, C [1 ]
Doucet, A [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian estimation; data augmentation; hidden Markov models; maximum a posteriori; simulated annealing;
D O I
10.1109/18.841176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hidden Markov models are mixture models in which the populations from one observation to the next are selected according to an unobserved finite state-space Markov chain. Given a realization of the observation process, our aim is to estimate both the parameters of the Markov chain and of the mixture model in a Bayesian framework. In this paper, wt present an original simulated annealing algorithm which, in the same way as the EM (Expectation-Maximization) algorithm, relies on data augmentation, and is based on stochastic simulation of the hidden Markov chain. This algorithm is shown to converge toward the set of Maximum A Posteriori (MAP) parameters under suitable regularity conditions.
引用
收藏
页码:994 / 1004
页数:11
相关论文
共 50 条
  • [31] Asymptotics of the maximum likelihood estimator for general hidden Markov models
    Douc, R
    Matias, C
    BERNOULLI, 2001, 7 (03) : 381 - 420
  • [32] Hidden Markov Linear Regression Model and its Parameter Estimation
    Liu, Hefei
    Wang, Kunqjnu
    Li, Yong
    IEEE ACCESS, 2020, 8 : 187037 - 187042
  • [33] Recursive parameter estimation algorithm of the Dirichlet hidden Markov model
    Vaiciulyte, Jurate
    Sakalauskas, Leonidas
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (02) : 306 - 323
  • [34] Hidden Markov Model for a Self-Learning of Simulated Annealing Cooling Law
    Lalaoui, Mohamed
    El Afia, Abdellatif
    Chiheb, Raddouane
    PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS (ICMCS), 2016, : 558 - 563
  • [35] A hyperplanes intersection simulated annealing algorithm for maximum score estimation
    Florios, Kostas
    ECONOMETRICS AND STATISTICS, 2018, 8 : 37 - 55
  • [36] Estimation of Viterbi path in Bayesian hidden Markov models
    Lember, Juri
    Gasbarra, Dario
    Koloydenko, Alexey
    Kuljus, Kristi
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2019, 77 (02): : 137 - 169
  • [37] Minimax Adaptive Estimation of Nonparametric Hidden Markov Models
    De Castro, Yohann
    Gassiat, Elisabeth
    Lacour, Claire
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [38] Estimation of Viterbi path in Bayesian hidden Markov models
    Jüri Lember
    Dario Gasbarra
    Alexey Koloydenko
    Kristi Kuljus
    METRON, 2019, 77 : 137 - 169
  • [39] EQUIVALENT DIPOLE PARAMETER-ESTIMATION USING SIMULATED ANNEALING
    GERSON, J
    CARDENAS, VA
    FEIN, G
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1994, 92 (02): : 161 - 168
  • [40] Maximum-likelihood versus maximum a posteriori parameter estimation of physiological system models:: The C-peptide impulse response case study
    Sparacino, G
    Tombolato, C
    Cobelli, C
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (06) : 801 - 811