Simulated annealing for maximum A Posteriori parameter estimation of hidden Markov models

被引:19
|
作者
Andrieu, C [1 ]
Doucet, A [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian estimation; data augmentation; hidden Markov models; maximum a posteriori; simulated annealing;
D O I
10.1109/18.841176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hidden Markov models are mixture models in which the populations from one observation to the next are selected according to an unobserved finite state-space Markov chain. Given a realization of the observation process, our aim is to estimate both the parameters of the Markov chain and of the mixture model in a Bayesian framework. In this paper, wt present an original simulated annealing algorithm which, in the same way as the EM (Expectation-Maximization) algorithm, relies on data augmentation, and is based on stochastic simulation of the hidden Markov chain. This algorithm is shown to converge toward the set of Maximum A Posteriori (MAP) parameters under suitable regularity conditions.
引用
收藏
页码:994 / 1004
页数:11
相关论文
共 50 条
  • [21] Computational issues in parameter estimation for stationary hidden Markov models
    Bulla, Jan
    Berzel, Andreas
    COMPUTATIONAL STATISTICS, 2008, 23 (01) : 1 - 18
  • [22] Training hidden Markov models by hybrid simulated annealing for visual speech recognition
    Jong-Seok Lee
    Cheol Hoon Park
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 198 - +
  • [23] Recursive maximum likelihood estimation for hidden semi-Markov models
    Squire, K
    Levinson, SE
    2005 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2005, : 329 - 334
  • [24] ASYMPTOTIC PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMATION IN MISSPECIFIED HIDDEN MARKOV MODELS
    Douc, Randal
    Moulines, Eric
    ANNALS OF STATISTICS, 2012, 40 (05): : 2697 - 2732
  • [25] Parameter estimation for hidden Markov chains
    Archer, GEB
    Titterington, DM
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) : 365 - 390
  • [26] Almost sure parameter estimation and convergence rates for hidden Markov models
    Elliott, RJ
    Moore, JB
    SYSTEMS & CONTROL LETTERS, 1997, 32 (04) : 203 - 207
  • [27] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Elena Ehrlich
    Ajay Jasra
    Nikolas Kantas
    Methodology and Computing in Applied Probability, 2015, 17 : 315 - 349
  • [28] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Ehrlich, Elena
    Jasra, Ajay
    Kantas, Nikolas
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (02) : 315 - 349
  • [29] Maximum a Posteriori Approximation of Hidden Markov Models for Proportional Sequential Data Modeling With Simultaneous Feature Selection
    Ali, Samr
    Bouguila, Nizar
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5590 - 5601
  • [30] Exploring Simulated Annealing Algorithm for Parameter Estimation of Software Reliability Models
    Zeng Min
    Li Haifeng
    Wang Xuecheng
    Lu Minyan
    PROCEEDINGS OF 2009 INTERNATIONAL SYMPOSIUM ON AIRCRAFT AIRWORTHINESS, 2009, : 489 - 493