Simulated annealing for maximum A Posteriori parameter estimation of hidden Markov models

被引:19
|
作者
Andrieu, C [1 ]
Doucet, A [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc Grp, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian estimation; data augmentation; hidden Markov models; maximum a posteriori; simulated annealing;
D O I
10.1109/18.841176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hidden Markov models are mixture models in which the populations from one observation to the next are selected according to an unobserved finite state-space Markov chain. Given a realization of the observation process, our aim is to estimate both the parameters of the Markov chain and of the mixture model in a Bayesian framework. In this paper, wt present an original simulated annealing algorithm which, in the same way as the EM (Expectation-Maximization) algorithm, relies on data augmentation, and is based on stochastic simulation of the hidden Markov chain. This algorithm is shown to converge toward the set of Maximum A Posteriori (MAP) parameters under suitable regularity conditions.
引用
收藏
页码:994 / 1004
页数:11
相关论文
共 50 条