Blind source separation using the maximum signal fraction approach

被引:18
作者
Hundley, DR [1 ]
Kirby, MJ [1 ]
Anderle, M [1 ]
机构
[1] Whitman Coll, Dept Math, Walla Walla, WA 99362 USA
关键词
D O I
10.1016/S0165-1684(02)00342-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is shown that the independent components required to separate linearly mixed sources may be obtained by solving the generalized singular vector equation associated with a maximum signal fraction approach. This perspective permits the identification of a variational problem for blind source separation. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1505 / 1508
页数:4
相关论文
共 10 条
[1]  
ANDERLE M, 2002, MATH SIGNAL PROCESSI
[2]   A blind source separation technique using second-order statistics [J].
Belouchrani, A ;
AbedMeraim, K ;
Cardoso, JF ;
Moulines, E .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) :434-444
[3]  
DEMOOR B, 1987, SVD SIGNAL PROCESSIN, P209
[4]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[5]   A TRANSFORMATION FOR ORDERING MULTISPECTRAL DATA IN TERMS OF IMAGE QUALITY WITH IMPLICATIONS FOR NOISE REMOVAL [J].
GREEN, AA ;
BERMAN, M ;
SWITZER, P ;
CRAIG, MD .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1988, 26 (01) :65-74
[6]  
HUNDLEY D, 2001, 1 COL STAT U DEP MAT
[7]  
Hundley D., 2001, P 3 INT C IND COMP A, P337
[8]   Fast and robust fixed-point algorithms for independent component analysis [J].
Hyvärinen, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (03) :626-634
[9]   Blind source separation using temporal predictability [J].
Stone, JV .
NEURAL COMPUTATION, 2001, 13 (07) :1559-1574
[10]  
Switzer P., 1984, 6 STANF U DEP STAT