Martingale Musielak-Orlicz Hardy spaces

被引:22
|
作者
Xie, Guangheng [1 ]
Jiao, Yong [2 ]
Yang, Dachun [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Minist Educ China, Lab Math & Complex Syst, Beijing 100875, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410075, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
martingale; Musielak-Orlicz Hardy space; maximal function; quadratic variation; conditional quadratic variation; atom; duality; LORENTZ SPACES; HP-SPACES; INEQUALITIES; LEBESGUE;
D O I
10.1007/s11425-017-9237-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce the martingale Musielak-Orlicz Hardy spaces H-phi*(Omega), P-phi(Omega), H-phi(S)(Omega), Q(phi)(Omega) and H-phi(s)(O), respectively, via the maximal function, the quadratic variation and the conditional quadratic variation of martingales. We then establish the atomic characterizations of H-phi(s)(Omega), P-phi(Omega) and Q(phi)(Omega). As applications, we obtain the dual space of H-phi(s)(Omega) and several martingale inequalities which further clarify the relations among H-phi*(Omega), P-phi(Omega), H-phi(S)(Omega), Q(phi)(Omega) and H-phi(s)(Omega). Especially, as special cases, the results on atomic characterizations of H-phi(s)(Omega), P-phi(Omega) and Q(phi)(Omega) as well as on the dual space of H-phi(s)(Omega) in the weighted case are also new.
引用
收藏
页码:1567 / 1584
页数:18
相关论文
共 50 条
  • [1] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 : 1567 - 1584
  • [2] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    ScienceChina(Mathematics), 2019, 62 (08) : 1567 - 1584
  • [3] Martingale inequalities on Musielak-Orlicz Hardy spaces
    He, Lechen
    Peng, Lihua
    Xie, Guangheng
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (11) : 5171 - 5189
  • [4] Dual spaces for martingale Musielak-Orlicz Lorentz Hardy spaces
    Weisz, Ferenc
    Xie, Guangheng
    Yang, Dachun
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 179
  • [5] NEW WEAK MARTINGALE HARDY SPACES OF MUSIELAK-ORLICZ TYPE
    Yang, Anming
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (02) : 847 - 857
  • [6] Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 1 - 57
  • [7] ATOMIC CHARACTERIZATIONS OF WEAK MARTINGALE MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Xie, Guangheng
    Yang, Dachun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04): : 884 - 917
  • [8] Local Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 255 - 327
  • [9] Hardy operators on Musielak-Orlicz spaces
    Karaman, Turhan
    FORUM MATHEMATICUM, 2018, 30 (05) : 1245 - 1254
  • [10] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072