Robotic Material Perception Using Active Multimodal Fusion

被引:34
作者
Liu, Huaping [1 ,2 ]
Sun, Fuchun [1 ,2 ]
Zhang, Xinyu [3 ]
机构
[1] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[3] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Active perception; adversarial learning; material recognition; multimodal fusion; reinforcement learning; FRAMEWORK; SENSOR;
D O I
10.1109/TIE.2018.2878157
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robotic material perception is an extremely important but challenging problem for industrial intelligence. The main difficulties come from the fact that the material properties are difficult to be comprehensibly evaluated by single visual, auditory, or tactile modality. Conventional multimodal fusion methods require collecting all of the multimodal information for a testing sample before the recognition. This is expensive, redundant, and may incur large latency. To tackle this problem, a new active fusion framework for the multimodal material recognition is proposed in this paper. We first adopt the adversarial learning method to obtain the modal-invariant representations to effectively bridge the gap between different modalities and then develop a reinforcement learning method for active modality selection. The developed framework and algorithms are evaluated on a publicly available dataset and show promising material recognition results. The developed framework provides an effective method for industrial material inspection.
引用
收藏
页码:9878 / 9886
页数:9
相关论文
共 40 条
[1]   Process Monitoring for Multimodal Processes With Mode-Reachability Constraints [J].
Afzal, Muhammad Shahzad ;
Tan, Wen ;
Chen, Tongwen .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (05) :4325-4335
[2]  
[Anonymous], P BRIT MACH VIS C
[3]   Revisiting active perception [J].
Bajesy, Ruzena ;
Aloimonos, Yiannis ;
Tsotsos, John K. .
AUTONOMOUS ROBOTS, 2018, 42 (02) :177-196
[4]  
Bernhard Pierre, 2008, H-infinity optimal control and related minimax design problems: A dynamic game approach
[5]   Defect Detection in SEM Images of Nanofibrous Materials [J].
Carrera, Diego ;
Manganini, Fabio ;
Boracchi, Giacomo ;
Lanzarone, Ettore .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (02) :551-561
[6]   Multimodal Sensor System for Pressure Ulcer Wound Assessment and Care [J].
Chang, Ming-Ching ;
Yu, Ting ;
Luo, Jiajia ;
Duan, Kun ;
Tu, Peter ;
Zhao, Yang ;
Nagraj, Nandini ;
Rajiv, Vrinda ;
Priebe, Michael ;
Wood, Elena A. ;
Stachura, Maximillian .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (03) :1186-1196
[7]  
Dai PY, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P677
[8]   A hierarchical Bayesian framework for multimodal active perception [J].
Filipe Ferreira, Joao ;
Castelo-Branco, Miguel ;
Dias, Jorge .
ADAPTIVE BEHAVIOR, 2012, 20 (03) :172-190
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]   A Tactile-Based Framework for Active Object Learning and Discrimination using Multimodal Robotic Skin [J].
Kaboli, Mohsen ;
Feng, Di ;
Yao, Kunpeng ;
Lanillos, Pablo ;
Cheng, Gordon .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (04) :2143-2150