Analytical lie group approach for solving fractional integro-differential equations

被引:37
作者
Pashayi, S. [1 ]
Hashemi, M. S. [2 ]
Shahmorad, S. [1 ]
机构
[1] Univ Tabriz, Dept Appl Math, Tabriz 5166616471, Iran
[2] Univ Bonab, Basic Sci Fac, Dept Math, POB 55517-61167, Bonab, Iran
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 51卷
关键词
Symmetry group; Fractional integro-differential equation; Infinitesimal generator; Prolongation; Invariant solution; SYMMETRY GROUP CLASSIFICATION; ELASTODYNAMICS PROBLEMS;
D O I
10.1016/j.cnsns.2017.03.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study is concerned with the Lie symmetry group analysis of Fractional Integro-Differential Equations (FIDEs) with nonlocal structures based on a new development of prolongation formula. A new prolongation for FIDEs is extracted and invariant solutions are finally presented for some illustrative examples. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 77
页数:12
相关论文
共 21 条
[1]   Symmetry groups of the equations with nonlocal structure and an application for the collisionless Boltzmann equation [J].
Akhiev, SS ;
Özer, T .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2005, 43 (1-2) :121-137
[2]  
[Anonymous], HDB LIE GROUP ANAL D
[3]  
[Anonymous], 1994, CRC HDB LIE GROUP AN
[4]  
Bluman G.W., 1980, Symmetries and Differential Equations
[5]   On group invariant solutions of the Boltzmann equation [J].
Bobylev, AV ;
Caraffini, GL ;
Spiga, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (06) :2787-2795
[6]  
Gazizov RK, 2007, Vestnik USATU, V9, P125, DOI DOI 10.1088/0031-8949/2009/T136/014016
[7]  
Hashemi MS, 2016, J OPTOELECTRON ADV M, V18, P383
[8]  
Hashemi MS, 2016, COMMUN THEOR PHYS, V65, P11, DOI 10.1088/0253-6102/65/1/11
[9]   Group analysis and exact solutions of the time fractional Fokker-Planck equation [J].
Hashemi, M. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 417 :141-149
[10]   Symmetries of integro-differential equations: A survey of methods illustrated by the Benny equations [J].
Ibragimov, NH ;
Kovalev, VF ;
Pustovalov, VV .
NONLINEAR DYNAMICS, 2002, 28 (02) :135-153