Optimization design of general Type-2 fuzzy logic controllers for an uncertain Power-line inspection robot

被引:3
|
作者
Zhao, Tao [1 ]
Wu, Qing [1 ]
Li, Shengchuan [2 ]
Guo, Rui [3 ]
Dian, Songyi [1 ]
Jia, Hairui [4 ]
机构
[1] Sichuan Univ, Coll Elect Engn & Informat Technol, Chengdu, Sichuan, Peoples R China
[2] State Grid Liaoning Elect Power Co Ltd, Elect Power Res Inst, Shenyang, Liaoning, Peoples R China
[3] State Grid Shandong Elect Power Co, Jinan, Shandong, Peoples R China
[4] Zhejiang Univ Finance & Econ, China Acad Finance Res, Hangzhou 310018, Zhejiang, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Power-line inspection robot; particle swarm optimization algorithm; general type-2 fuzzy logic controller; CENTROID-FLOW ALGORITHM; SYSTEMS; STABILIZATION; REDUCTION;
D O I
10.3233/JIFS-182515
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a general type-2 fuzzy logic controller (GT2FLC), which is optimized by the particle swarm optimization (PSO) algorithm, is applied to a power-line inspection (PLI) robot. The information fusion is used to design the GT2FLC to avoid the rule explosion. The proposed controller has the ability to deal with uncertainties when the PLI robot works on the insulated access cable. In order to compare the performance of the proposed controller with that of other controllers, the type-1 fuzzy logic controller (T1FLC) and the interval type-2 fuzzy logic controller (IT2FLC) are both optimized by the PSO to adjust the PLI robot. To show the ability of different controllers to deal with uncertainties, external disturbances and parameter perturbations are added to the PLI robot. According to simulations, the performance of the proposed controller is better than that of other controllers, and the proposed controller has better ability to deal with uncertainties.
引用
收藏
页码:2203 / 2214
页数:12
相关论文
共 50 条
  • [41] Design of interval type-2 fuzzy logic controller
    Hsiao, Ming-Ying
    Li, Tzuu-Hseng S.
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 4976 - +
  • [42] Intuit before tuning: Type-1 and type-2 fuzzy logic controllers
    Sarabakha, Andriy
    Fu, Changhong
    Kayacan, Erdal
    APPLIED SOFT COMPUTING, 2019, 81
  • [43] Optimization with Genetic Algorithms of Interval Type-2 Fuzzy Logic Controllers for an Autonomous Wheeled Mobile Robot: A Comparison under Different Kinds of Perturbations
    Martinez, Ricardo
    Castillo, Oscar
    Aguilar, Luis T.
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 901 - +
  • [44] Type-1 and Type-2 Fuzzy Logic Controllers for Autonomous Robotic Motion
    Cherroun, L.
    Nadour, M.
    Kouzou, A.
    2019 3RD INTERNATIONAL CONFERENCE ON APPLIED AUTOMATION AND INDUSTRIAL DIAGNOSTICS (ICAAID 2019), 2019,
  • [45] Refinement CTIN for General Type-2 Fuzzy Logic Systems
    Long Thanh Ngo
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 1225 - 1232
  • [46] Optimization of Type-2 Fuzzy Logic Controller Design Using the GSO and FA Algorithms
    Bernal, Emer
    Lagunes, Marylu L.
    Castillo, Oscar
    Soria, Jose
    Valdez, Fevrier
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2021, 23 (01) : 42 - 57
  • [47] A survey of Type-2 fuzzy logic controller design using nature inspired optimization
    Valdez, Fevrier
    Castillo, Oscar
    Cortes-Antonio, Prometeo
    Melin, Patricia
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) : 6169 - 6179
  • [48] Design of type-2 Fuzzy Logic Systems Based on Improved Ant Colony Optimization
    Zhang, Zhifeng
    Wang, Tao
    Chen, Yang
    Lan, Jie
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (02) : 536 - 544
  • [49] Optimization of Type-2 Fuzzy Logic Controller Design Using the GSO and FA Algorithms
    Emer Bernal
    Marylu L. Lagunes
    Oscar Castillo
    José Soria
    Fevrier Valdez
    International Journal of Fuzzy Systems, 2021, 23 : 42 - 57
  • [50] Design of type-2 Fuzzy Logic Systems Based on Improved Ant Colony Optimization
    Zhifeng Zhang
    Tao Wang
    Yang Chen
    Jie Lan
    International Journal of Control, Automation and Systems, 2019, 17 : 536 - 544