Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review

被引:54
|
作者
Ansart, Manon [1 ,2 ,3 ,4 ,5 ]
Epelbaum, Stephane [1 ,2 ,3 ,4 ,5 ,6 ]
Bassignana, Giulia [1 ,2 ,3 ,4 ,5 ]
Bone, Alexandre [1 ,2 ,3 ,4 ,5 ]
Bottani, Simona [1 ,2 ,3 ,4 ,5 ]
Cattai, Tiziana [1 ,2 ,3 ,4 ,5 ,8 ]
Couronne, Raphael [1 ,2 ,3 ,4 ,5 ]
Faouzi, Johann [1 ,2 ,3 ,4 ,5 ]
Koval, Igor [1 ,2 ,3 ,4 ,5 ]
Louis, Maxime [1 ,2 ,3 ,4 ,5 ]
Thibeau-Sutre, Elina [1 ,2 ,3 ,4 ,5 ]
Wen, Junhao [1 ,2 ,3 ,4 ,5 ]
Wild, Adam [1 ,2 ,3 ,4 ,5 ]
Burgos, Ninon [1 ,2 ,3 ,4 ,5 ]
Dormont, Didier [1 ,2 ,3 ,4 ,5 ,7 ]
Colliot, Olivier [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Durrleman, Stanley [1 ,2 ,3 ,4 ]
机构
[1] ICM, Inst Cerveau & Moelle Epiniere, F-75013 Paris, France
[2] INSERM, U 1127, F-75013 Paris, France
[3] CNRS, UMR 7225, F-75013 Paris, France
[4] Sorbonne Univ, F-75013 Paris, France
[5] INRIA, Aramis Project Team, F-75013 Paris, France
[6] Hop La Pitie Salpetriere, AP HP, Natl Reference Ctr Rare Early Dementias,Dept Neur, Inst Memory & Alzheimers Dis IM2A,Ctr Excellence, Blvd Hop, Paris, France
[7] Hop La Pitie Salpetriere, AP HP, Dept Neuroradiol, Paris, France
[8] Sapienza Univ Rome, Dept Informat Engn Elect & Telecommun, Rome, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Quantitative review; Alzheimer's disease; Mild cognitive impairment; Progression; Automatic prediction; Cognition; ALZHEIMERS-DISEASE; CROSS-VALIDATION; CONVERSION; CLASSIFICATION; MCI; DIAGNOSIS; CRITERIA; ATROPHY; MRI;
D O I
10.1016/j.media.2020.101848
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extracted. For each of them, we reported the used data set, the feature types, the algorithm type, performance and potential methodological issues. The impact of these characteristics on the performance was evaluated using a multivariate mixed effect linear regressions. We found that using cognitive, fluorodeoxyglucose-positron emission tomography or potentially electroencephalography and magnetoencephalography variables significantly improved predictive performance compared to not including them, whereas including other modalities, in particular T1 magnetic resonance imaging, did not show a significant effect. The good performance of cognitive assessments questions the wide use of imaging for predicting the progression to AD and advocates for exploring further fine domain-specific cognitive assessments. We also identified several methodological issues, including the absence of a test set, or its use for feature selection or parameter tuning in nearly a fourth of the papers. Other issues, found in 15% of the studies, cast doubts on the relevance of the method to clinical practice. We also highlight that short-term predictions are likely not to be better than predicting that subjects stay stable over time. These issues highlight the importance of adhering to good practices for the use of machine learning as a decision support system for the clinical practice. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Review on Machine Learning Approaches for Diagnosis of Alzheimer's Disease and Mild Cognitive Impairment Based on Brain MRI
    Givian, Helia
    Calbimonte, Jean-Paul
    IEEE ACCESS, 2024, 12 : 109912 - 109929
  • [42] Comparison of Deep Learning and Traditional Machine Learning Models for Predicting Mild Cognitive Impairment Using Plasma Proteomic Biomarkers
    Wang, Kesheng
    Adjeroh, Donald A.
    Fang, Wei
    Walter, Suzy M.
    Xiao, Danqing
    Piamjariyakul, Ubolrat
    Xu, Chun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (06)
  • [43] Machine learning prediction of mild cognitive impairment and its progression to Alzheimer's disease
    Fouladvand, Sajjad
    Noshad, Morteza
    Periyakoil, V. J.
    Chen, Jonathan H.
    HEALTH SCIENCE REPORTS, 2023, 6 (10)
  • [44] Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer's disease
    Blanco, Kevin
    Salcidua, Stefanny
    Orellana, Paulina
    Sauma-Perez, Tania
    Leon, Tomas
    Steinmetz, Lorena Cecilia Lopez
    Ibanez, Agustin
    Duran-Aniotz, Claudia
    de la Cruz, Rolando
    ALZHEIMERS RESEARCH & THERAPY, 2023, 15 (01)
  • [45] Machine learning approaches to mild cognitive impairment detection based on structural MRI data and morphometric features
    Zubrikhina, M. O.
    Abramova, O. V.
    Yarkin, V. E.
    Ushakov, V. L.
    Ochneva, A. G.
    Bernstein, A. V.
    Burnaev, E. V.
    Andreyuk, D. S.
    Savilov, V. B.
    Kurmishev, M. V.
    Syunyakov, T. S.
    Karpenko, O. A.
    Andryushchenko, A. V.
    Kostyuk, G. P.
    Sharaev, M. G.
    COGNITIVE SYSTEMS RESEARCH, 2023, 78 : 87 - 95
  • [46] Longitudinal survival analysis and two-group comparison for predicting the progression of mild cognitive impairment to Alzheimer's disease
    Platero, Carlos
    Tobar, M. Carmen
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 341
  • [47] Detection of mild cognitive impairment in a community-dwelling population using quantitative, multiparametric MRI-based classification
    Bouts, Mark J. R. J.
    van der Grond, Jeroen
    Vernooij, Meike W.
    Koini, Marisa
    Schouten, Tijn M.
    de Vos, Frank
    Feis, Rogier A.
    Cremers, Lotte G. M.
    Lechner, Anita
    Schmidt, Reinhold
    de Rooij, Mark
    Niessen, Wiro J.
    Ikram, M. Arfan
    Rombouts, Serge A. R. B.
    HUMAN BRAIN MAPPING, 2019, 40 (09) : 2711 - 2722
  • [48] Review and update of the criteria for objective cognitive impairment and its involvement in mild cognitive impairment and dementia
    Gonzalez-Martinez, Patricia
    Oltra-Cucarella, Javier
    Sitges-Macia, Esther
    Bonete-Lopez, Beatriz
    REVISTA DE NEUROLOGIA, 2021, 72 (08) : 288 - 295
  • [49] MicroRNAs and mild cognitive impairment: A systematic review
    Piscopo, Paola
    Lacorte, Eleonora
    Feligioni, Marco
    Mayer, Flavia
    Crestini, Alessio
    Piccolo, Laura
    Bacigalupo, Ilaria
    Filareti, Melania
    Ficulle, Elena
    Confaloni, Annamaria
    Vanacore, Nicola
    Corbo, Massimo
    AGEING RESEARCH REVIEWS, 2019, 50 : 131 - 141
  • [50] Episodic and Semantic Autobiographical Memory in Mild Cognitive Impairment (MCI): A Systematic Review
    Marselli, Giulia
    Favieri, Francesca
    Casagrande, Maria
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (08)