Predicting the progression of mild cognitive impairment using machine learning: A systematic, quantitative and critical review

被引:59
作者
Ansart, Manon [1 ,2 ,3 ,4 ,5 ]
Epelbaum, Stephane [1 ,2 ,3 ,4 ,5 ,6 ]
Bassignana, Giulia [1 ,2 ,3 ,4 ,5 ]
Bone, Alexandre [1 ,2 ,3 ,4 ,5 ]
Bottani, Simona [1 ,2 ,3 ,4 ,5 ]
Cattai, Tiziana [1 ,2 ,3 ,4 ,5 ,8 ]
Couronne, Raphael [1 ,2 ,3 ,4 ,5 ]
Faouzi, Johann [1 ,2 ,3 ,4 ,5 ]
Koval, Igor [1 ,2 ,3 ,4 ,5 ]
Louis, Maxime [1 ,2 ,3 ,4 ,5 ]
Thibeau-Sutre, Elina [1 ,2 ,3 ,4 ,5 ]
Wen, Junhao [1 ,2 ,3 ,4 ,5 ]
Wild, Adam [1 ,2 ,3 ,4 ,5 ]
Burgos, Ninon [1 ,2 ,3 ,4 ,5 ]
Dormont, Didier [1 ,2 ,3 ,4 ,5 ,7 ]
Colliot, Olivier [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
Durrleman, Stanley [1 ,2 ,3 ,4 ]
机构
[1] ICM, Inst Cerveau & Moelle Epiniere, F-75013 Paris, France
[2] INSERM, U 1127, F-75013 Paris, France
[3] CNRS, UMR 7225, F-75013 Paris, France
[4] Sorbonne Univ, F-75013 Paris, France
[5] INRIA, Aramis Project Team, F-75013 Paris, France
[6] Hop La Pitie Salpetriere, AP HP, Natl Reference Ctr Rare Early Dementias,Dept Neur, Inst Memory & Alzheimers Dis IM2A,Ctr Excellence, Blvd Hop, Paris, France
[7] Hop La Pitie Salpetriere, AP HP, Dept Neuroradiol, Paris, France
[8] Sapienza Univ Rome, Dept Informat Engn Elect & Telecommun, Rome, Italy
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Quantitative review; Alzheimer's disease; Mild cognitive impairment; Progression; Automatic prediction; Cognition; ALZHEIMERS-DISEASE; CROSS-VALIDATION; CONVERSION; CLASSIFICATION; MCI; DIAGNOSIS; CRITERIA; ATROPHY; MRI;
D O I
10.1016/j.media.2020.101848
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We performed a systematic review of studies focusing on the automatic prediction of the progression of mild cognitive impairment to Alzheimer's disease (AD) dementia, and a quantitative analysis of the methodological choices impacting performance. This review included 172 articles, from which 234 experiments were extracted. For each of them, we reported the used data set, the feature types, the algorithm type, performance and potential methodological issues. The impact of these characteristics on the performance was evaluated using a multivariate mixed effect linear regressions. We found that using cognitive, fluorodeoxyglucose-positron emission tomography or potentially electroencephalography and magnetoencephalography variables significantly improved predictive performance compared to not including them, whereas including other modalities, in particular T1 magnetic resonance imaging, did not show a significant effect. The good performance of cognitive assessments questions the wide use of imaging for predicting the progression to AD and advocates for exploring further fine domain-specific cognitive assessments. We also identified several methodological issues, including the absence of a test set, or its use for feature selection or parameter tuning in nearly a fourth of the papers. Other issues, found in 15% of the studies, cast doubts on the relevance of the method to clinical practice. We also highlight that short-term predictions are likely not to be better than predicting that subjects stay stable over time. These issues highlight the importance of adhering to good practices for the use of machine learning as a decision support system for the clinical practice. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 62 条
[1]  
Aksman L.M., 2017, THESIS
[2]  
Ansart M., 2019, DESIGN DATA DRIVEN D
[3]   Reduction of recruitment costs in preclinical AD trials: validation of automatic pre-screening algorithm for brain amyloidosis [J].
Ansart, Manon ;
Epelbaum, Stephane ;
Gagliardi, Geoffroy ;
Colliot, Olivier ;
Dormont, Didier ;
Dubois, Bruno ;
Hampel, Harald ;
Durrleman, Stanley .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (01) :151-164
[4]   Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls [J].
Arbabshirani, Mohammad R. ;
Plis, Sergey ;
Sui, Jing ;
Calhoun, Vince D. .
NEUROIMAGE, 2017, 145 :137-165
[5]   Multi-study validation of data-driven disease progression models to characterize evolution of biomarkers in Alzheimer's disease [J].
Archetti, Damiano ;
Ingala, Silvia ;
Venkatraghavan, Vikram ;
Wottschel, Viktor ;
Young, Alexandra L. ;
Bellio, Maura ;
Bron, Esther E. ;
Klein, Stefan ;
Barkhof, Frederik ;
Alexander, Daniel C. ;
Oxtoby, Neil P. ;
Frisonif, Giovanni B. ;
Redolfi, Alberto .
NEUROIMAGE-CLINICAL, 2019, 24
[6]   Prediction of Incipient Alzheimer's Disease Dementia in Patients with Mild Cognitive Impairment [J].
Ardekani, Babak A. ;
Bermudez, Elaine ;
Mubeen, Asim M. ;
Bachman, Alvin H. .
JOURNAL OF ALZHEIMERS DISEASE, 2017, 55 (01) :269-281
[7]   Accuracy of the Clinical Diagnosis of Alzheimer Disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010 [J].
Beach, Thomas G. ;
Monsell, Sarah E. ;
Phillips, Leslie E. ;
Kukull, Walter .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2012, 71 (04) :266-273
[8]  
Bishop C.M., 2006, Pattern Recognition and Machine Learning
[9]   Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods [J].
Borra, Simone ;
Di Ciaccio, Agostino .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) :2976-2989
[10]   Impact of a clinical decision support tool on prediction of progression in early-stage dementia: a prospective validation study [J].
Bruun, Marie ;
Frederiksen, Kristian S. ;
Rhodius-Meester, Hanneke F. M. ;
Baroni, Marta ;
Gjerum, Le ;
Koikkalainen, Juha ;
Urhemaa, Timo ;
Tolonen, Antti ;
van Gils, Mark ;
Rueckert, Daniel ;
Dyremose, Nadia ;
Andersen, Birgitte B. ;
Lemstra, Afina W. ;
Hallikainen, Merja ;
Kurl, Sudhir ;
Herukka, Sanna-Kaisa ;
Remes, Anne M. ;
Waldemar, Gunhild ;
Soininen, Hilkka ;
Mecocci, Patrizia ;
van der Flier, Wiesje M. ;
Lotjonen, Jyrki ;
Hasselbalch, Steen G. .
ALZHEIMERS RESEARCH & THERAPY, 2019, 11 (1)