Early Lithium Plating Behavior in Confined Nanospace of 3D Lithiophilic Carbon Matrix for Stable Solid-State Lithium Metal Batteries

被引:78
作者
Huang, Shaobo [1 ]
Yang, Hao [2 ,3 ]
Hu, Jiangkui [1 ]
Liu, Yongchang [1 ]
Wang, Kexin [2 ]
Peng, Hailin [2 ]
Zhang, Hao [4 ]
Fan, Li-Zhen [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Ctr Nanochem CNC, Beijing 100871, Peoples R China
[3] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
[4] Res Inst Chem Def, Beijing Key Lab Adv Chem Energy Storage Technol &, Beijing 100191, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
confined nanospace; Li metal anodes; lithium deposition behavior; solid-state batteries; ANODE; NUCLEATION; DENSITY; GROWTH; OXIDE; LAYER;
D O I
10.1002/smll.201904216
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Considerable efforts are devoted to relieve the critical lithium dendritic and volume change problems in the lithium metal anode. Constructing uniform Li+ distribution and lithium "host" are shown to be the most promising strategies to drive practical lithium metal anode development. Herein, a uniform Li nucleation/growth behavior in a confined nanospace is verified by constructing vertical graphene on a 3D commercial copper mesh. The difference of solid-electrolyte interphase (SEI) composition and lithium growth behavior in the confined nanospace is further demonstrated by in-depth X-ray photoelectron spectrometer (XPS) and line-scan energy dispersive X-ray spectroscopic (EDS) methods. As a result, a high Columbic efficiency of 97% beyond 250 cycles at a current density of 2 mA cm(-2) and a prolonged lifespan of symmetrical cell (500 cycles at 5 mA cm(-2)) can be easily achieved. More meaningfully, the solid-state lithium metal cell paired with the composite lithium anode and LiNi0.5Co0.2Mn0.3O2 (NCM) as the cathode also demonstrate reduced polarization and extended cycle. The present confined nanospace-derived hybrid anode can further promote the development of future all solid-state lithium metal batteries.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Lithiophilic Mo3N2/MoN as multifunctional interlayer for dendrite-free and ultra-stable lithium metal batteries [J].
Zhang, Xiaojuan ;
Chen, Yuanfu ;
Srinivas, Katam ;
Yu, Bo ;
Ma, Fei ;
Wang, Bin ;
Wang, Xinqiang ;
He, Jiarui ;
Xu, Zheng-Long .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 612 :332-341
[42]   Highly stable lithium metal anode enabled by constructing lithiophilic 3D interphase on robust framework [J].
Kang, Rongkai ;
Du, Yiqun ;
Zhou, Wei ;
Zhang, Dongmei ;
Sun, Chenyi ;
Wang, Han ;
Chen, Guowen ;
Zhang, Jianxin .
CHEMICAL ENGINEERING JOURNAL, 2023, 454
[43]   Microrod Patterned Lithium Metal Surface for High-performance Solid-state Lithium Batteries [J].
Zhang, Xiang ;
Sun, Chunwen .
CHEMISTRY LETTERS, 2022, 51 (08) :891-893
[44]   Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries [J].
Chen, Yuncai ;
Jiang, Yidong ;
Chi, Shang-Sen ;
Woo, Haw Jiunn ;
Yu, Kai ;
Ma, Jun ;
Wang, Jun ;
Wang, Chaoyang ;
Deng, Yonghong .
JOURNAL OF POWER SOURCES, 2022, 521
[45]   Ultra-Thin Lithium Silicide Interlayer for Solid-State Lithium-Metal Batteries [J].
Sung, Jaekyung ;
Kim, So Yeon ;
Harutyunyan, Avetik ;
Amirmaleki, Maedeh ;
Lee, Yoonkwang ;
Son, Yeonguk ;
Li, Ju .
ADVANCED MATERIALS, 2023, 35 (22)
[46]   A Freestanding 3D Skeleton with Gradationally Distributed Lithiophilic Sites for Realizing Stable Lithium Anodes [J].
Li, Tianhui ;
Zhou, Hanxiao ;
Liu, Wenjing ;
Gao, Jingjing ;
Guo, Zhihao ;
Su, Zihao ;
Yan, Yuanting ;
Su, Shaoxiang ;
Xie, Haoyu ;
Peng, Gongchang ;
Qu, Meizhen .
CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (66)
[47]   Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries [J].
Zhang, Xiaojuan ;
Ma, Fei ;
Srinivas, Katam ;
Yu, Bo ;
Chen, Xin ;
Wang, Bin ;
Wang, Xinqiang ;
Liu, Dawei ;
Zhang, Ziheng ;
He, Jiarui ;
Chen, Yuanfu .
ENERGY STORAGE MATERIALS, 2022, 45 :656-666
[48]   Dendrite formation in solid-state batteries arising from lithium plating and electrolyte reduction [J].
Liu, Haoyu ;
Chen, Yudan ;
Chien, Po-Hsiu ;
Amouzandeh, Ghoncheh ;
Hou, Dewen ;
Truong, Erica ;
Oyekunle, Ifeoluwa P. ;
Bhagu, Jamini ;
Holder, Samuel W. ;
Xiong, Hui ;
Gor'kov, Peter L. ;
Rosenberg, Jens T. ;
Grant, Samuel C. ;
Hu, Yan-Yan .
NATURE MATERIALS, 2025, 24 (04) :581-588
[49]   Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries [J].
Shen, Xin ;
Cheng, Xinbing ;
Shi, Peng ;
Huang, Jiaqi ;
Zhang, Xueqiang ;
Yan, Chong ;
Li, Tao ;
Zhang, Qiang .
JOURNAL OF ENERGY CHEMISTRY, 2019, 37 :29-34
[50]   Challenges and Opportunities for Fast Charging of Solid-State Lithium Metal Batteries [J].
Vishnugopi, Bairav S. ;
Kazyak, Eric ;
Lewis, John A. ;
Nanda, Jagjit ;
McDowell, Matthew T. ;
Dasgupta, Neil P. ;
Mukherjee, Partha P. .
ACS ENERGY LETTERS, 2021, 6 (10) :3734-3749