Multiple soliton solutions for the (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation

被引:57
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
关键词
Hirota bilinear method; Nizhnik-Novikov-Veselov; Multiple soliton solutions; Multiple singular soliton solutions; Resonance; HIROTA 3-SOLITON CONDITION; SINE-GORDON EQUATION; DE VRIES EQUATION; TANH-COTH METHOD; COHERENT STRUCTURES; BILINEAR EQUATIONS; BURGERS EQUATIONS; WAVE SOLUTIONS; COLLISIONS; SEARCH;
D O I
10.1016/j.na.2009.08.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymmetric Nizhnik-Novikov-Veselov equation will be investigated. The Hirota bilinear method will be used to derive N-soliton solutions of this completely integrable equation. Multiple singular soliton solutions will be developed as well. The asymmetric Nizhnik-Novikov-Veselov equation does not show any resonant phenomenon. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1314 / 1318
页数:5
相关论文
共 28 条
[1]   1-soliton solution of (1+2)-dimensional nonlinear Schrodinger's equation in dual-power law media [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (38) :5941-5943
[2]   Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion [J].
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (9-10) :3503-3506
[3]   The one-dimensional heat equation subject to a boundary integral specification [J].
Dehghan, Mehdi .
CHAOS SOLITONS & FRACTALS, 2007, 32 (02) :661-675
[4]   A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions [J].
Dehghan, Mehdi ;
Shokri, Ali .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (03) :700-715
[5]   A numerical solution and an exact explicit solution of the NLS equation [J].
El-Sayed, SM ;
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) :1315-1322
[6]   A comparison between Cole-Hopf transformation and the decomposition method for solving Burgers' equations [J].
Gorguis, A .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 173 (01) :126-136
[9]   EXACT SOLUTION OF MODIFIED KORTEWEG-DE VRIES EQUATION FOR MULTIPLE COLLISIONS OF SOLITONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (05) :1456-1458
[10]   EXACT SOLUTION OF SINE-GORDON EQUATION FOR MULTIPLE COLLISIONS OF SOLITONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (05) :1459-1463