An in-situ solidification strategy to block polysulfides in Lithium-Sulfur batteries

被引:70
作者
Chen, Ke [1 ,2 ]
Fang, Ruopian [3 ]
Lian, Zan [1 ,4 ]
Zhang, Xiaoyin [1 ,4 ]
Tang, Pei [1 ,4 ]
Li, Bo [1 ,4 ]
He, Kuang [1 ,4 ]
Wang, Da-wei [3 ]
Cheng, Hui-Ming [1 ,4 ,5 ]
Sun, Zhenhua [1 ,4 ]
Li, Feng [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[3] Univ New South Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
[4] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[5] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen Geim Graphene Ctr, Shenzhen 518055, Peoples R China
基金
芬兰科学院; 中国国家自然科学基金; 国家重点研发计划;
关键词
Lithium-Sulfur battery; Electrolyte additive; Organosulfur; Accelerating kinetic; Polysulfide blocking; TOTAL-ENERGY CALCULATIONS; CATHODE; PERFORMANCE; ENCAPSULATION; ELECTROLYTE; TRANSITION; COMPOSITE;
D O I
10.1016/j.ensm.2021.02.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-sulfur (Li-S) batteries have recently emerged as a promising candidate for next-generation energy storage systems. Yet the polysulfide dissolution and shuttle issues cause severe performance degradation, hindering their practical use. Here, we report an in-situ solidification strategy for efficient polysulfide blocking via nucleophilic substitution reactions triggered by 2, 5-dichloro-1, 4-benzoquinone (DCBQ) in the electrolyte. Polysulfides could be covalently fixed by DCBQ in the form of solid organosulfur to enable effective immobilization of polysulfides within the cathode, contributing to high capacity-retention. Moreover, the benzoquinonyl groups of DCBQ were found able to accelerate the lithium-ion transport and promote the sulfur redox reaction kinetics. Consequently, the Li-S cell with DCBQ exhibited good electrochemical performances. This approach demonstrates a novel avenue for polysulfide blocking to boost Li-S battery performance.
引用
收藏
页码:224 / 232
页数:9
相关论文
共 52 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Bridging the academic and industrial metrics for next-generation practical batteries [J].
Cao, Yuliang ;
Li, Matthew ;
Lu, Jun ;
Liu, Jun ;
Amine, Khalil .
NATURE NANOTECHNOLOGY, 2019, 14 (03) :200-207
[4]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[5]   Rational Design of Cathode Structure for High Rate Performance Lithium-Sulfur Batteries [J].
Chen, Hongwei ;
Wang, Changhong ;
Dai, Yafei ;
Qiu, Shengqiang ;
Yang, Jinlong ;
Lu, Wei ;
Chen, Liwei .
NANO LETTERS, 2015, 15 (08) :5443-5448
[6]   Metal-Organic Frameworks (MOFs)-Derived Nitrogen-Doped Porous Carbon Anchored on Graphene with Multifunctional Effects for Lithium-Sulfur Batteries [J].
Chen, Ke ;
Sun, Zhenhua ;
Fang, Ruopian ;
Shi, Ying ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
[7]   Current Status and Future Prospects of Metal-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED MATERIALS, 2019, 31 (27)
[8]   Inhibition of polysulfide diffusion in lithium-sulfur batteries: mechanism and improvement strategies [J].
Deng, Chao ;
Wang, Zhuowen ;
Wang, Shengping ;
Yu, Jingxian .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (20) :12381-12413
[9]   Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level [J].
Doerfler, Susanne ;
Althues, Holger ;
Haertel, Paul ;
Abendroth, Thomas ;
Schumm, Benjamin ;
Kaskel, Stefan .
JOULE, 2020, 4 (03) :539-554
[10]   Bronze TiO2 as a cathode host for lithium-sulfur batteries [J].
Dong, Wenjing ;
Wang, Di ;
Li, Xiaoyun ;
Yao, Yuan ;
Zhao, Xu ;
Wang, Zhao ;
Wang, Hong-En ;
Li, Yu ;
Chen, Lihua ;
Qian, Dong ;
Su, Bao-Lian .
JOURNAL OF ENERGY CHEMISTRY, 2020, 48 :259-266