The Two-Dimensional Hubbard Model on the Honeycomb Lattice

被引:47
作者
Giuliani, Alessandro [1 ]
Mastropietro, Vieri [2 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
INTERACTING FERMI-LIQUID; RENORMALIZATION-GROUP; FINITE-TEMPERATURE; DIMENSIONS; BEHAVIOR; SYSTEMS; SURFACE;
D O I
10.1007/s00220-009-0910-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the two-dimensional (2D) Hubbard model on the honeycomb lattice, as a model for a single layer graphene sheet in the presence of screened Coulomb interactions. At half filling and weak enough coupling, we compute the free energy, the ground state energy and we construct the correlation functions up to zero temperature in terms of convergent series; analyticity is proved by making use of constructive fermionic renormalization group methods. We show that the interaction produces a modification of the Fermi velocity and of the wave function renormalization without changing the asymptotic infrared properties of the model with respect to the unperturbed non-interacting case; this rules out the possibility of superconducting or magnetic instabilities in the thermal ground state.
引用
收藏
页码:301 / 346
页数:46
相关论文
共 24 条
[1]   Fermi liquid behavior in the 2D Hubbard model at low temperatures [J].
Benfatto, G. ;
Giuliani, A. ;
Mastropietro, V. .
ANNALES HENRI POINCARE, 2006, 7 (05) :809-898
[2]   Renormalization group, hidden symmetries and approximate ward identities in the XYZ model [J].
Benfatto, G ;
Mastropietro, V .
REVIEWS IN MATHEMATICAL PHYSICS, 2001, 13 (11) :1323-1435
[3]   PERTURBATION-THEORY OF THE FERMI-SURFACE IN A QUANTUM LIQUID - A GENERAL QUASI-PARTICLE FORMALISM AND ONE-DIMENSIONAL SYSTEMS [J].
BENFATTO, G ;
GALLAVOTTI, G .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (3-4) :541-664
[4]   BETA-FUNCTION AND SCHWINGER-FUNCTIONS FOR A MANY FERMIONS SYSTEM IN ONE-DIMENSION - ANOMALY OF THE FERMI-SURFACE [J].
BENFATTO, G ;
GALLAVOTTI, G ;
PROCACCI, A ;
SCOPPOLA, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (01) :93-171
[5]  
Benfatto G., 1995, RENORMALIZATION GROU
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Interacting Fermi liquid in two dimensions at finite temperature. Part I: Convergent attributions [J].
Disertori, M ;
Rivasseau, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (02) :251-290
[8]   Interacting Fermi liquid in two dimensions at finite temperature. Part II: Renormalization [J].
Disertori, M ;
Rivasseau, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (02) :291-341
[9]   A two dimensional Fermi liquid.: Part 1:: Overview [J].
Feldman, J ;
Knörrer, H ;
Trubowitz, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 247 (01) :1-47
[10]  
GAWEDZKI K, 1985, COMMUN MATH PHYS, V102, P1, DOI 10.1007/BF01208817