Diagonals of the laurent series of rational functions

被引:8
作者
Pochekutov, D. Yu. [1 ]
机构
[1] Siberian Fed Univ, Krasnoyarsk, Russia
关键词
diagonal; Laurent series; hyperplane amoeba; separating cycle; local residue; integral representation; algebraic function;
D O I
10.1007/s11202-009-0119-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of the algebraicity of diagonal series for the Laurent expansions of rational functions, geometrically identifiable using the amoeba of the denominator or an integer point in its Newton polyhedron. We give sufficient conditions for the algebraicity of diagonals basing on the theory of multidimensional residues and topological properties of the complements to collections of complex hypersurfaces in complex analytic varieties.
引用
收藏
页码:1081 / 1091
页数:11
相关论文
共 14 条
[1]  
Aizenberg L., 1979, TRANSL MATH MONOGR, V58
[2]  
[Anonymous], 1993, ANN MATH STUD
[3]   ALGEBRAIC POWER-SERIES AND DIAGONALS [J].
DENEF, J ;
LIPSHITZ, L .
JOURNAL OF NUMBER THEORY, 1987, 26 (01) :46-67
[5]   Laurent determinants and arrangements of hyperplane amoebas [J].
Forsberg, M ;
Passare, M ;
Tsikh, A .
ADVANCES IN MATHEMATICS, 2000, 151 (01) :45-70
[6]   ALGEBRAIC FUNCTIONS OVER FINITE FIELDS [J].
FURSTENBERG, H .
JOURNAL OF ALGEBRA, 1967, 7 (02) :271-+
[7]  
Gelfand I.M., 1994, DISCRIMINANTS RESULT
[8]   ON ENTIRE FUNCTIONS OF EXPONENTIAL TYPE AND INDICATORS OF ANALYTIC FUNCTIONALS [J].
KISELMAN, CO .
ACTA MATHEMATICA UPPSALA, 1967, 117 :1-&
[9]   Multidimensional versions of Poincare's theorem for difference equations [J].
Leinartas, E. K. ;
Passare, M. ;
Tsikh, A. K. .
SBORNIK MATHEMATICS, 2008, 199 (9-10) :1505-1521
[10]   D-FINITE POWER-SERIES [J].
LIPSHITZ, L .
JOURNAL OF ALGEBRA, 1989, 122 (02) :353-373