Self-similarity and Random Walks

被引:2
|
作者
Kaimanovich, Vadim A. [1 ]
机构
[1] Jacobs Univ Bremen, D-28759 Bremen, Germany
来源
FRACTAL GEOMETRY AND STOCHASTICS IV | 2009年 / 61卷
关键词
Self-similar group; random walk; amenability; entropy; BOUNDARY; AMENABILITY; AUTOMATON; ALGEBRAS; ENTROPY;
D O I
10.1007/978-3-0346-0030-9_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is an introductory level survey of some topics from a new branch of fractal analysis - the theory of self-similar groups. We discuss recent works on random walks on self-similar groups and their applications to the problem of amenability for these groups.
引用
收藏
页码:45 / 70
页数:26
相关论文
共 50 条
  • [1] Similarity and self-similarity in random walk with fixed, random and shrinking steps
    Mitra, Tushar
    Hossain, Tomal
    Banerjee, Santo
    Hassan, Md. Kamrul
    CHAOS SOLITONS & FRACTALS, 2021, 145
  • [2] Self-similarity of multilayer networks
    Wang, Bing
    Yu, Huizhi
    Wei, Daijun
    CHINESE PHYSICS B, 2025, 34 (01)
  • [3] HOMOMORPHISMS TO R CONSTRUCTED FROM RANDOM WALKS
    Erschler, Anna
    Karlsson, Anders
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (06) : 2095 - 2113
  • [4] SELF-SIMILARITY AND SPECTRAL THEORY: ON THE SPECTRUM OF SUBSTITUTIONS
    Bufetov, A. I.
    Solomyak, B.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2023, 34 (03) : 313 - 346
  • [5] Coherence and strictification for self-similarity
    Hines, Peter
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2016, 11 (04) : 847 - 867
  • [6] Self-Similarity in the Collection of w-Limit Sets
    D'Aniello, Emma
    Steele, T. H.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (01): : 87 - 100
  • [7] Complexity measures and self-similarity on spreading depression waves
    Piqueira, Jose Roberto C.
    Fernandes de Lima, Vera Maura
    Batistela, Cristiane M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 401 : 271 - 277
  • [8] Speed Exponents of Random Walks on Groups
    Amir, Gideon
    Virag, Balint
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (09) : 2567 - 2598
  • [9] The duality of fractals: roughness and self-similarity
    Bez, Nicolas
    Bertrand, Sophie
    THEORETICAL ECOLOGY, 2011, 4 (03) : 371 - 383
  • [10] κ-generalised Gutenberg-Richter law and the self-similarity of earthquakes
    da Silva, Sergio Luiz E. F.
    CHAOS SOLITONS & FRACTALS, 2021, 143