Equivalence of three-particle scattering formalisms

被引:55
|
作者
Jackura, A. W. [1 ,2 ]
Dawid, S. M. [1 ,2 ]
Fernandez-Ramirez, C. [3 ]
Mathieu, V [4 ]
Mikhasenko, M. [5 ]
Pilloni, A. [6 ,7 ,8 ]
Sharpe, S. R. [9 ]
Szczepaniak, A. P. [1 ,2 ,10 ]
机构
[1] Indiana Univ, Phys Dept, Bloomington, IN 47405 USA
[2] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Ciudad De Mexico 04510, Mexico
[4] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain
[5] CERN, CH-1211 Geneva 23, Switzerland
[6] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, Trento, Italy
[7] Fdn Bruno Kessler, I-38123 Villazzano, Trento, Italy
[8] INFN, Sez Genova, I-16146 Genoa, Italy
[9] Univ Washington, Phys Dept, Seattle, WA 98195 USA
[10] Thomas Jefferson Natl Accelerator Facil, Theory Ctr, Newport News, VA 23606 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.100.034508
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In recent years, different on-shell 3 -> 3 scattering formalisms have been proposed to be applied to both lattice QCD and infinite-volume scattering processes. We prove that the formulation in the infinite volume presented by Hansen and Sharpe in [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015).] and subsequently Briceno et al. in [R. A. Briceno, M. T. Hansen, and S. R. Sharpe, Phys. Rev. D 95, 074510 (2017).] can be recovered from the B-matrix representation, derived on the basis of S-matrix unitarity, presented by Mai et al. in [M. Mai, B. Hu, M. Doring, A. Pilloni, and A. Szczepaniak, Eur. Phys. J. A 53, 177 (2017).] and Jackura et al. in [A. Jackura, C. Fernandez-Ramirez, V. Mathieu, M. Mikhasenko, J. Nys, A. Pilloni, K. Saldana, N. Sherrill, and A. P. Szczepaniak (JPAC Collaboration), Eur. Phys. J. C 79, 56 (2019).] Therefore, both formalisms in the infinite volume are equivalent and the physical content is identical. Additionally, the Faddeev equations are recovered in the nonrelativistic limit of both representations.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Conditions for the confirmation of three-particle nonlocality
    Mitchell, P
    Popescu, S
    Roberts, D
    PHYSICAL REVIEW A, 2004, 70 (06): : 060101 - 1
  • [32] Probabilistic teleportation of a three-particle state
    Fang, JX
    Zhu, SQ
    Zhang, R
    Chen, XF
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 40 (05) : 519 - 522
  • [33] Model independency and three-particle systems
    Bedaque, PF
    NUCLEAR PHYSICS A, 2004, 737 : 195 - 199
  • [34] Probabilistic teleportation of the three-particle entangled GHZ state by two partial three-particle entangled GHZ states
    Fan, QB
    Sun, LL
    Zhang, S
    Yeon, KH
    Um, CI
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (02) : 385 - 387
  • [35] Ridge effect and three-particle correlations
    Sanchis-Lozano, Miguel-Angel
    Sarkisyan-Grinbaum, Edward
    PHYSICAL REVIEW D, 2017, 96 (07)
  • [36] Three-particle integrals with Bessel functions
    A. M. Frolov
    D. M. Wardlaw
    Physics of Atomic Nuclei, 2014, 77 : 175 - 184
  • [37] Asymptotic method for determining the amplitude for three-particle breakup: Neutron-deuteron scattering
    Belov, P. A.
    Yakovlev, S. L.
    PHYSICS OF ATOMIC NUCLEI, 2013, 76 (02) : 126 - 138
  • [38] Asymptotic method for determining the amplitude for three-particle breakup: Neutron-deuteron scattering
    P. A. Belov
    S. L. Yakovlev
    Physics of Atomic Nuclei, 2013, 76 : 126 - 138
  • [39] Behavior of the scattering amplitude at the three-particle threshold for zero-range pair potentials
    Pen'kov F.M.
    Sandhas W.
    Bulletin of the Russian Academy of Sciences: Physics, 2009, 73 (2) : 207 - 210
  • [40] EQUIVALENCE OF CONFIGURATIONAL AVERAGING FORMALISMS IN CPA - 2-PARTICLE PROPERTIES
    BISHOP, AR
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (20): : 3317 - 3327